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INTRODUCTION

This progress report discusses the research performed under NASA
Grant NsG-490 covering the period from February 1 to September 1, 1964.

The purpose of this grant is the application and extension of modern auto-
matic control theory to nuclear rocket dynamics and control. The report
is composed of four independent sections each covering a specific part of
the research program.

Section I '"Closed-Loop Sub-Optimal Control Employing the Second
Method of Liapunov" presents a new approach to the synthesis problem. It
is an attempt to combine the Second Method of Liapunov and Pontryagin's
Maximum Principle and results in a closed-loop control, as compared to
open-loop control obtained using the Maximum Principle, The research to
date has been concerned with developing the foundation for this approach.
The work to be performed during the next report period will be devoted to
the applications of this concept to the control of bilinear nuclear rocket
system,

Section II "Nonlinear Stability of Coupled Core Reactor" is a
study of the application of the Second Method of Liapunov to the stability
of clustered nuclear rocket engines. Previous stability analysis of coupled
core systems has been based on linear reactor models, with approximations
to the neutron transport delay times. The purpose of this research is to
consider more realistic system models with true delay times and to determine
regions of stability.

Section IIT "Synthesis of Optimal Closed~Loop Control for Nuclear
Rocket Systems' considers the realization of a closed control for an optimal

control law determined by the Maximum Principle. In physical systems various



types of disturbance are encountered which makes open-loop control im-
practical. This section treats the determination of a closed loop control
in the presence of measurement noise and external disturbances. Several
approaches to the problem are discussed and an example worked.

Section IV "Limits of Validity for Some Approximations in
Reactor Dynamics" evolved as a side interest in the program. It was felt
to be of sufficient importance to be included in the report. This section
discusses various approximations to the response of a reactor to a constant
rate of reactivity increase. Such approximations are of particular interest
during start-up.

Another part of the research program for which insufficient
progress has been made to warrant a report is the work on the stability
of loosely-coupled higher order system. This phase of the program recently
begun is concerned with the use of the Second Method in determining regions
of stability of such systems. It will be some time before definite informa-

tion can be obtained.



SECTION I
CLOSED-LOOP SUB-OPTIMAL CONTROL EMPLOYING THE SECOND METHOD OF LIAPUNOV
Chapter 1

INTRODUCTION AND ORGANIZATION

1.1 Introduction

The problem of controlling a system such that its performance
approximates in some sense a desired performance has been important for a
long time. A natural outgrowth of this interest is the optimal control
problem: controlling a system in such a manner that its performance is
the best possible.

Within the last few years, several, rather elegant, general
methods of solving the optimal control problem have been presented.
Notable among these is the maximum principle of Pontryagin. 1In general,
these methods involve unwieldly computations for all but trivial problems.
Also in many cases, the control once obtained is of an open-loop nature,
that is, valid for only one initial condition and no disturbances.

The difficulties associated with these methods have led to a
growing gap between theoretical and practical control work, To f£ill this
gap, there has been an ever-increasing development of special techniques
for special problems which generally lead to sub-optimal control, control
which is acceptably close to the true optimal but practicable.

In this work, the Second Method of Liapunov is used as a basis
for developing such a method for closed-loop optimal control of linear
systems with a bounded control norm. This method centers on the solution
of a partial differential equation which is equivalent to the Hamilton-

Jacobi equation. A special class of solutions, called eigenvector scalar



products, is shown to exist. These solutions are combined to form a
sub-optimal control method which.provides a practical compromise between
system complexity and speed of response.

However, the development of this method is, at present, still
incomplete., Therefore the material in this report is basically of a
background nature and hence limited in its usefulness. Current research
1s pointed toward extending the approach in order to make it apply to a
wider range of problems and hence to increase its usefulness. Prelimin-
ary results have indicated that this attempt should be very successful.

Several future research topics are discussed in the last chapter.

1.2 Organization of the Report

This report consists of three basic parts. The first part
comprising Chapter 1, 2, and 3 is introductory in nature, Following the
introductory material in this chapter, the basic optimization problem to
be considered is formulated in Chapter 2. Chapter 2 also contains a
brief review of a modified form of the maximum principle which has been
termed the minimum principle. 1In Chapter 3 a brief introduction to the
Second Method of Liapunov is presented in order to make the work a self-
contained unit,

Chapters 4 and 5 form the second part, the theoretical heart. 1In
Chapter 4, the Second Method is combined with the minimum principle to
develop another approach to the basic optimization problem, It is
demonstrated that solving the basic optimization problem is equivalent
to solving a first-order partial differential equation which is identical

to the Hamilton-Jacobli equation. Although no general method of solving



this equation is known, a special class of solutions is shown to exist.
This class of solutions, called eigenvector scalar products, is developed
and discussed in detail in Chapter 5.

The third part, consisting of Chapter 6, is the practical portion
of the work. 1In Chapter 6, the eigenvector scalar product solutions are
combined to form an effective sub-optimal control method for systems in
vvhich the control matrix is non-singular. In this form, the sub-optimal
control method provides an effective solution to a limited class of
practical systems.

Chapter 7 contains a discussion of the concepts introduced and
several ideas for further research. Examples are presented throughout
the work whenever they can serve to better illustrate a point.

A basic knowledge of vector and matrix algebra is expected of the
reader, as well as an understanding of the state variable method of
formulating control problems. Although a brief review of the minimum
principle and the Second Method are presented; the reader who is not
familiar with these methods may wish to consult some of the suggested

references for a more introductory presentation,



Chapter 2

MINIMUM PRINCIPLE

2.1 Introduction

This chapter consists of two basic parts. First, the basic
optimization problem of this work is formulated, including all necessary
definitions and notation, Second, a brief description of the minimum
principle method for solving this problem is presented. Since extensive

3’4’5, only the

accounts of this method may be found in the literature
aspects pertinent to the particular problem of this work are included.
Those familiar with the minimum principle may wish to skip section 2.4,

The chapter concludes with a short discussion of the inadequacy

of the minimum principle approach in solving the optimization problem.

2.2 Notation

In this section, the notation which will be used throughout is
explained. 1In general, the state space approach will be employed,
utilizing vector-matrix formulation, Vectors will be indicated by lower
case Roman letters such as X, u. One exception to this rule will be the
letter t, which will indicate time, a scalar. The components of a vector
will be indicated by subscripted lower case Roman letters, therefore
X = (X1, X9,...,X,). Particular vectors will be indicated by super-

scripts, therefore xl = (xi, x%,...,x;).



Matrices will be designated by underlined upper case Roman letters
such as A, B; scalars, by upper case Roman letters or Greek letters. The
transpose of a matrix or vector will be designated by a prime, therefore
x' is the transpose of the vector x.

The notation dL(x)/dx will be used to indicate a vector whose
components consist of the partial derivatives of L(x), thus ®BL(X)/dx =
(AL(x)/Oxq1,...,dL(x)/8x,). The notation VL(x) will also be used when the

differentiation is with respect to x; thus, VL(x) = aL(x)/dx.

2.3 Formulation of the Basic Optimization Problem

It will be assumed that the state of the control system can be
completely described at any instant of time by n real numbers, x], X2,...,
X . The behavior (or motion) of the system as a function of time may then
be described by n real functions of time, xj(t), xp(t),...,x,(t). These
variables, called state variables, are the components of the state vector
x(E) = (x3(t), Xo(L),; wns,x3(t)).

It will be further assumed that the motion of the system can be
controlled by a set of r real valued control variables, uj(t), ugs(t),...
u.(t), which are the components of the control vector, u(t). The set of
all possible values of u is called the control region, U, a subset of a
r-dimensional Euclidean space. 1In most practical applications, U is closed
and bounded.

For the present work U will consist of the set of all u such that

"Qp"z < o? where D is a non-singular matrix and @ is a real constant,
However, by a simple change of variables w = a';gu, "Qp"z < aZ becomes

Ilw “2 < 1. Hence there is no loss of generality in considering D to be



the identity matrix and @ to be unity. Thus U will be the set of all u
such that "Ullz:E 1. 1If u(t)€U and is, in addition, piecewise continuous,
then u(t) is called an admissible control.

The only systems to be considered here are ones for which the laws
of motion may be written as a set of n first-order linear equations.

. n r

i5%¥3 + 2 b, u
=1 T g KK i=1,2,...,n (2.1)

Or written in vector-matrix notation

X = Ax + Bu (2.2)

It will be assumed that corresponding to every admissible control
u(t) and every initial condition x° = x(ty), that the motion of the system
is defined uniquely by the solution of equation (2.2), This solution is
called the solution (or motion) of the system corresponding to the control
u(t) for the initial condition x°.

An admissible control is said to transfer the system from x° to x!

if the solution corresponding to that control and the initial condition

x° is defined for to < t < t] and reaches x1 at the time ty.

Since, in general, there may be many admissible controls which

transfer the system from x° to xl, the question which naturally arises is,

"Which admissible control, in addition to transferring the system from x°

to xl, minimizes some cost functional
"1
J = j‘ L(x(t))dt (2.3)

Lo

where L(x) 1is a real and positive-valued function of the state vecior?"



It should be noted that for fixed points the transition time,
t] - t,, is not fixed but is dependent on the particular control used.
One example of particular importance is the case when L(x) = 1 and the
cost functional, J, reduces to tj - t,, the transition time. This is the
familiar time-optimal problem which is treated in detail in later chapters.

(o]

A control which transfers the system from x~ to xL while

minimizing the cost functional is called an optimal control corresponding

o 1

to a transition from x° ¢to xl. For convenience, x~ is considered to be
the origin for the rest of this work.

The optimal control may be found in two different forms. First,

the control variables may be obtained as functions of time during the

transition interval t; - t, for a given initial condition x°®. This is
called open-loop control, since no information concerning the system
state is needed or used during the transition interval.

Second, the control variables may be determined as explicit
functions of the system state, i.e., u = u(x). This is called closed-
loop control, since knowledge of the system state is used during the
transition interval. The advantages of closed-loop control are well
established in the literaturels? and therefore only three points are
mentioned here. First, feedback or closed-loop operation reduces the
effect of system parameter variations. Second, feedback operation
minimizes the effect of external disturbances. Third, in many practical
cases the equations of motion are known only approximately., By the use
of closed-loop control, variations in the systems motion due to these
inaccuracies can be minimized. Thus it appears obvious that not only

should one seek optimal control, but, in general, one should seek

closed-loop optimal control.



The fundamental problem may then be stated in the following form.
Given a linear system whose laws of motion are described by equation (2.2),
it is desired to find an optimal, closed-loop, admissible control
corresponding to a transition from x° to the origin with a cost functional
of the form of equation (2.3). Additional assumptions concerning the
system and the cost functional will be made in later chapters.

The next section presents the basic formulation and theorems of
the minimum princible, a method for obtaining an open-loop solution of the

above problem.

2,4 ° Minimum Principle

The concept of the minimum principle was first introduced by
Kalman3 as a minor modification of the maximum principle developed by
Pontryagin and his students®. The essential diffdrences between the two
approaches are noted below. The minimum principle is a logical extension
of the classical calculus of variations and provides a broad and unifying
approach to a wide variety of variational and optimal control problems.
Only those aspects of the theory which are pertinent to the problem of
the preceding section are presented here,

As the first step in the minimum principle approach, a new set
of n variables, pj, are adjoined to the state variables, x;, of the system.
These new variables, called adjoint variables, are defined by the following
set of differential equations, the adjoint equation.

* n L)
Py = ‘gh ( Z PpXm + L(x))
xi m=1 i = 1,2,.,.,“ (2'4)

10



Next a scalar function H analogous to the Hamiltonian is defined by
H(x,p,u) = p'x + L(x) (2.5)

It can be readily verified that equations (2.2) and (2.4) can be rewritten
in terms of H(x,p,u) in the following system of equations which are
analogous to the Hamiltonian canonic equatioms.

X1 = g%; (H(x,p,u))

= 7O
P1 g OUPIU)y L en (2.6)

For fixed values of x and p, H becomes a function of the control
vector u. The greatest lower bound of this function with respect to

admissible controls uéU will be denoted by Ho, therefore

o inf
H'(x,p) = 0 H(x,p,u) (2.7)

If the continuous function H actually assumes its lower bound on U, then
H® will be the minimum of H on U. This will be true for all problems in

this work, hence

Ho(x,p) = ™ y(x,p,u) (2.8)
ueU

The corresponding minimizing control will be designated by u’.
The following theorem presents a necessary condition for the
optimality of a control u.
Theorem 2.1 Let u(t), t; =t < t;, be an admissible control such
that the corresponding motion x(t) which begins at the point x°

at time t, reaches, at time t;, the point xl. In order that u(t)

11



and x(t) be optimal, it is necessary that there exist a nonzero

continuous vector function p(t) corresponding to u(t) and x(t)

such that:

1) for every t, t, = t < t}, the function Ho(x,p,u) of the

variable u€U attains its minimum at the point u = u(t):
H(x,p,u) = H (x,p)
2) for every t, to < t < ty, the function Ho(x,p) is
identically zero:
HO(x(t),p(t)) = O

This theorem formulated in terms of the minimum principle is
equivalent to a theorem of the maximum principle initially proven by
Pontryagins, In the maximum principle formulation, the sign preceding
L(x) in both equation (2.4) and (2.5) is negative., Because of this
change, it is necessary to consider the least upper bound of H(x,p,u),
rather than the greatest lower bound. Hence H is maximized rather than
minimized. Although the use of the maximum principle is more common in
the literature, the use of the minimum principle is more convenient for
the development of Chapter 4 and thus it is employed here.

For the problem presented in the preceding section, the
Hamiltonian is given by

H(x,p,u) = p'(Ax + Bu) + L(x)

= p' Ax + p' Bu + L(x) (2.9)
The adjoint equations (2.4) may then be developed by use of equation (2.6)

15= -A'p - VL(x) (2.10)

12




The next step is the minimization of H(p,x,u) with respect to utlU,
Since the middle term on the right side of equation (2.9) is the scalar
product of two vectors, p'B and u, H(x,p,u) is minimized by making the
direction of u opposite to B'p and making the magnitude of u as large as
possible. However, the norm of u i1s required to be less than or equal
unity in order for u to be an admissible control. Hence, u is selected

to be a vector with unit norm (length) and direction opposite B'p:

o) ]
tB'pil (2.11)

Substituting u as given by equation (2.1ll) into the equations (2.2) and

(2.9), the following set of coupled first-order ordinary differential

equations are obtained.

X = Ax + _BB'P
- KB'pll . (2.12)
p =-A'p -VL(x) (2.13)

with the boundary conditions x(t,) = x© and x(t;) = x1l and the auxiliary
condition H°(x,p) = O.

The difficulties inherent in the minimum principle approach are
now obvious. First, the simultaneous solution of equations (2.12) and
(2.13) is not elementary, since both equations are in general nonlinear.
The adjoint equations have no boundary conditions while the system
equations have second boundary conditions which creates the so called
"two-point" boundary value problem. Normally numerical solution of these
equations is necessary. Second, the control as determined by the

minimum principle is open-loop control, i.e., u = u(t) not u(x).

13



Another method for attacking the basic optimization problem of
ﬁhe preceding section is presented in Chapter 4. The method is based on
both the Second Method of Liapunov and the minimum principle and attempts
to remove or alleviate the difficulties mentioned above. In particular,
the control vector is found as a function of the state variables, i.e.,
closed-loop control. However, before proceeding to that development, it
is necessary to present some of the basic definitions and theorems of the

Second Method.

14



Chapter 3

SECOND METHOD OF LIAPUNOV

3.1 Introduction

The Second Method of Liapunov provides the most general approach
to the stability of dynamic systems whose laws of motion are described
by ordinary linear or nonlinear differential equations. This chapter
presents a brief review of the basic concepts and definitions of the
Second Method, Only those portions of the theory which are directly
applicable to the problem at hand will be discussed. The reader is
directed to the literature for a more complete presentation6’7’8’9.

In this chapter, the dynamic systems under consideration are
assumed to be autonomous and describable in state variable form as n
first-order differential equations of the form

xg = f£4(x)
1=1, 2,...,n (3.1)

In matrix notation, this may be written as
x = f£(x) (3.2)

Such a system is called autonomous. It is obvious that for closed-loop

control the system of equation (2.2) is of this form since it becomes

X = Ax + Bu(x)

= f£(x)

15



The equilibrium state being investigated is assumed to be located
at the origin. This is actually no restriction, since any equilibrium
point may always be translated by simple linear change of variables to the
origin, Again the system discussed in Chapter 2 satisfies this assumption
since the control is always chosen such as to drive the system to the
origin.

This chapter consists of three parts. First, the definitions of
definiteness and stability are presented. Second, a modified Liapunov
stability theorem is stated without proof. Third, this stability theorem

is given a geometric interpretation.

3.2 Definitions

The concepts of definiteness play an important role in the
stability theorems. The following definitions, which follow Malkin, are
of interest here.

Definition 3.1 Positive (Negative) Definite

A scalar function, V(x), is positive (negative) definite if for
xt <« & V(x)>0 (<0) for all x # 0 and V(0) = O.

Definition 3.2 Positive (Negative) Semidefinite

A scalar function, V(x), is positive (negative) semidefinite if
for lixy € V(x) > 0 (<0) for all x # 0 and V(0) = O,

Definition 3.3 Indefinite

A scalar function, V(x), is indefinite if no matter how small @
is chosen, V(x) may assume both positive and negative values for
il = G,
If in the above definitions & may be made arbitrarily large, in which case

the definitions hold in the whole space. This will be the case with all

of the scalar functions to be discussed in the following chapters.

16



A few examples will serve to clarify these definitions. The

function
V(x) = (x)? + (x)?

is positive definite if the system is second-order, but is omly semi-

definite if the system is of higher order, since for X =Xy = 0, v(x)

will be zero independent of X3, X;4,... . On the other hand the function

V(x) = (% + x2)2

is semidefinite even for second-order systems, since if x; = -x9, V(x)

will be zero even though x is not equal to zero. The function
V(X) = xl + X2

is obviously indefinite independent of the order of the system.

One class of scalar functions that will be particularly important
is a quadratic form., In this case V(x) may be written in the form

V(x) = x'Cx

where C is a constant square matrix. Usually if V(x) is a quadratic form,
the definiteness of V(x) is attributed to C. Hence one speaks of a
positive definite matrix.

Closely related to the concept of definiteness is the concept of
a simple closed surface (or curve)., A surface is said to be simple if
it does not intersect itself and closed if it intersects all paths that
lead from the origin to infinity. The reader is reminded that it is
assumed that the equilibrium state is at the origin. Hence a simple
closed surface is topologically equivalent to the surface of an

n-dimensional sphere. Letovll has shown that if a scalar functiom, V(x),

17




is positive definite and, in addition, is radially unbounded, i.e.,
V(x)-—w»o0as 1ilx ll.—>0>, then the set of all points x such that V(x) = K,

—

a positive constant, is a simple closed surface. 1In addition, the surface
V(x) = Ky lies entirely inside the surface V(x) = K, whenever K;> Kj,
There are many types of stability that have been defined for
systems that may be described by equation (3.2). In the case of linear
systems, almost all of these definitions are equivalent. For nonlinear
systems, this is not true. However for this work, only stability in the
sense of Liapunov and asymptotic stability are of interest. Hence only
these types of stability are defined. Let S(&) be the spherical region
of radius @>0 around the origin, i.e., S(Q) consists of all points x such
that lIxll < C,

Definition 3.4 Stable in the Sense of Liapunov

The origin is stable in the sense of Liapunov, or simply stable,
1f corresponding to every number €> 0 there exists a number
5(€)> 0 such that solutions starting in S(8) will remain in S(&)
ever after,

Definition 3.5 Asymptotically Stable

If the origin is stable and, in addition, every solution starting
in S(8) not only stays in S(€) but tends toward the origin as
time increases indefinitely, then the origin is asymptotically
stable,

Definition 3.6 Unstable

The origin is unstable if for some €>0 and any >0, no matter
how small, there is always a point x in S(8) such that a solution
starting from that point leaves S(e).
A graphical representation of these definitions is shown in Figure 3.1
for a two-dimensional case.

The definitions emphasize the local character of stability for

nonlinear systems, since the region S(3) may be arbitrarily small., If

18
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OF STABILITY DEFINITIONS
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the region S(®) includes the entire space, the definitions are called
global. In the chapters which follow the main interest is in global

asymptotic stability, since the systems are linear.

3.3 Stability Theorem

As was the case with definitions of stability, there are many
stability theorems which constitute the Second Method. Since the major
concern of this work is not stability, only one theorem is presented here.
This stability theorem, due to LaSa11e7, differs from the original
Liapunov theorem in the first condition where é(x) is allowed to be
semidefinite, as long as it is not zero on a solution of the system, other
than the origin. 1In the original theorem, G(x) was required to be
negative definite.

Theorem 3,1 Stability Theorem If there exists a positive

definite scalar function V(x) with continuous first partials such
that
1) G(X) < 0 for all x (at least negative semidefinite)
2) V(x)—=°o as|ixll +=o0(radially unbounded)
then if V(X) is not identically zero along any solution of
(3.2) other than the origin, the system is globally asymptotically
stable.
Since V(x) has continuous first partials, the chain rule may be used to

obtain V(x)

. _odv _ a1 avm) X2 W(x) Ha
v(x) dt dx1 ac * DXy ac Teeet i, dt
n

= Z AV(x) -

i=1  ¥x; i

20




which may be written with the use of the notation W(x) as

\'I(x) = W'(x)x (3.3)

The basic concept of the Second Method is now evident: by proper
selection or generation of a Liapunov V-function, it is possible to
determine the stability of a nonlinear dynamic system without any
knowledge of the solutions of the system equation. It is perhaps of
value to investigate the stability theorem from a geometric viewpoint.

Since V(x) is positive definite, and radially unbounded V(x) = K,
a constant, becomes a family of concentric closed surfaces surrounding
the origin such that the surface V(x) = Kj lies inside V(x) = K, whenever
Ky> Ky. Figure 3.2 shows a graphical picture for the two-dimensional or
second-order case., Since both V(x) and G(x) are implicit functions of
time and V(x) is required to be non-positive, the state of the system must
be found on successively "smaller" V(x) = K, a constant, surfaces or must
remain stationary. But O(X) cannot be zero on any solution except x = 0;
therefore the state of the system cannot remain stationary. Hence, the
system trajectory must move toward the origin.

Three features of the Second Method should be noted. First, the
method provides only sufficient conditions for stability; hence if a
system does not satisfy the stability theorem, no conclusion may be drawn
relative to system stability. Second, the converse of the stability
theorem has been proven. Therefore if the system is stable, a V-function
must exist. Third, the V-function is not unique, which is one of the most
powerful features of the Second Method. No longer is one searching for a

single unique solution to the differential equation but rather for one,



STATE OF
K, <Ky<Kg V(XI =K,  THE SYSTEM

<1y <t3

FIGURE 3.2 SURFACES OF V(x) = CONSTANT
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out of many, V-functions. However because the method provides only
sufficient conditions, some V-functions may provide a better answer than

others.

23



Chapter 4

CLOSED-LOOP OPTIMAL CONTROL VIA THE SECOND METHOD

4,1 Introduction

In Chapter 2 the basic optimization problem was presented. This
was followed by one method of obtaining an open-loop solution of the
problem, tte minimum principle. 1In this chapter another method of
attacking the basic optimization problem is presented. This method, based
on the Second Method of Liapunov and the minimum principle, yields closed-
loop control.

In the next section a brief discussion of the background for the
use of the Second Method is presented. This is followed by two
optimality theorems and their proofs. 1t is demonstrated that solving
the basic optimzation problem is equivalent to solving a first-order
partial differential equation which is identical to the Hamilton-Jacobi
equation, Since no general method of solving this equation is known, the
approach presented here has not solved the problem but has rather
formulated the problem into a new framework. In this framework, a special
class of solutions, called eigenvector scalar products, is shown to exist
in the next chapter. From these solutions, a method for designing
effective closed-loop, sub-optimal control is developed,

It should be noted that the results of this chapter are not new,
although the method of deriving them is. As is shown in the last section

of this chapter, the results could have been derived directly from the
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Hamilton-Jacobi equation. In effect, a special case of the Hamilton-
Jacobi equation is derived in this chapter. It was felt that carrying
out the development in this manner adds greater insight into the relation

between the Second Method and optimal control.

4,2 Background

The use of the Second Method of Liapunov for the design of optimal
systems has been suggested by several authorsll’12’13’14’15. Unfortunate-
ly, almost all of these methods have three basic problems: 1) they are
approximate, 2) either no estimate of the approximation error is possible,
or the estimate is overly conservative, and 3) it is necessary to choose
a V(x) for which no general procedure is presented. Hence these methods
were never widely accepted. (A brief resume of several of these methods
can be found in the Appendix.)

Nahi14 has recently presented a procedure for using the Second
Method to obtain time-optimal control. However, Nahi was only able to
find solutions for a rather restricted class of systems, It is shown later

that Nahi's method is a special case of the method presented here.

The determination of V from V(x) was discussed in Chapter 3; the
result is repeated here for reference.

Vo= W(x)x (4.1)
Now substituting equation (2.2) for i, one obtains

V = W'(x)Ax + W' (x)Bu (4.2)

Thus V becomes a function of both the control and state vectors for a

given V(x). 1In the following discussion the notation V(x,u) will be used
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to indicate this dependence on both u and x.

In 1960 Kalman and Bertram12

presented a method for designing
approximately time-optimal control systems. Their method was based on
the knowledge that for a closed, bounded control region, the control
vector is always on the boundary. They suggested
minimizing G(X,u) with respect to all admissible controls based on the

argument that this would make V(x) approach zero most rapidly and hence

the system would reach the origin in minimum time. This method suffers

from all of the disadvantages noted above and therefore has not been widely

employed, However, the concept of minimizing G(x,u) is valuable and is
used below.

Retaining the idea of minimizing G(X,u) for the moment, consider
the implication of setting G(x) = -L(x). Since L(x) was required to be
at least positive semidefinite, Q(x) will thus be of the proper nature,

Then V(x) becomes equivalent to the cost functional:

€1, t1
V(x(ty)) - V(x(ty)) = g V(x)dt = S - L(x)dt
ts to (4.3)

Hence surfaces of constant V(x) become surfaces of constant cost.

The combination of these two concepts suggests the idea of setting

m

uig G(x,u) = -L(x). The question remaining is "Does this provide optimal

control?"” The following section demonstrates that the answer is

affirmative.
Before proceeding with the proof in the next section, it should be
pointed out that all of the approaches employing the Second Method yield

closed-loop control, This is a feature that cannot be over-emphasized.
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4,3 Optimality Theorems

In the preceding section, it was suggested that the selection of
a V-function, V(x), such that ﬂég é(x,u) = -L(x), would yield optimal
control, In this section, corresponding optimality theorems are stated
and their proofs given.

Before doing this it is perhaps of value to state the basic
optimization problem again. Given a linear system whose laws of motion
can be described by

; = AX + Bu
it is desired to find an optimal, closed-loop, admissible control

corresponding to a transition from x® to the origin with a cost functional

of the form

t
J = S L(x(t))dt
t:0

The control region, U, is the set of all control vectors, u, such that
2
full® = 1.
For fixed values of x, V(x,u) becomes a continuous function of u,

The minimum of this function with respect to all admissible control is

designated by V°(x).

Vo(x) = MO V(x,u) (4.4)

Anticipating the results to follow, the corresponding minimizing control
is again denoted by u’.
Theorem 4.1 If there exists a Liapunov function, V(x), with
continuous second partial derivatives with respect to x and such
that &o(x) = -L(x), then the control u® which minimizes &(x,u) is

an optimal control.
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Before carrying out the proof of this theorem, consider the following
lemma,
Lemma 4.1 I1f there exists a Liapunov function, V(x), with
continuous second partial derivatives with respect to x and such
that Go(x) = -L(x), then the gradient of V(x), W(x), satisfies
the adjoint equation (2.4).
The first step in the proof of the lemma is the minimization of
6(X,u) as given by equation (4.2) with respect to all admissible controls.
The only term involving u is a scalar product of u and B'W(x). Thus by

an argument similar to that presented in section 2.4, u® is found to be

o _ -B'W(x)
[|B"W (O (4.5)

(o]

Substituting u~ for u in equation (4.2), one obtains

VO = W'(x)Ax - || B'W()I] (4.5A)
Setting Qo(x) = -L(x) yields
W' (x)Ax - ||B'W(x) || = -L(x) (4.6)

Now taking the partial derivative of both sides of equation (4.6) with

respect to x gives

V(W' (x))BB'W(x)

V(W' (x))Ax + A'W(x) - = - .
B LG (4.7
Therefore
v(wl(x))éx = _élw(x) + V(W'(X))_B_B‘W(X) - 4.8
TE WG T VL(O (4-8)
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But from equation (4.5)

o _ -B'W(x)
| B*v (x)
and hence equation (4.8) becomes
V(W' (x))Ax = = A"W(X) - V(W'(x))Bu, - VL(x) (4.9)

Now consider the total time derivative of W(x), again using the chain

rule:
E% (W(K)) = (W (x)))'x = (W(W'(x)))"Ax + (V(W'(x))) "By, (4.10)

By hypothesis V(x) has continuous second partial derivatives, and therefore
the matrix V(W'(x)) is symmetric. Thus V(W'(x)) = (V(W'(x)))'. Then

substituting equation (4.9) into equation (4.10) one obtains

2 We) = - AW - VL) (4011)

Comparing equation (4.11l) with the adjoint equation (2.13), one notes
that W(x) satisfies the adjoint equation, which completes the proof of
the lemma,

Now returning to the proof of theorem 4.1, W(x) is substituted

for p in the Hamiltonian as defined by equation (2.9) to obtain
H(X,W(x),u) = W'(x)Ax + W'(x)Bu + L(x)
]
= V(x,u) + L(x) (4.12)
Since L(x) is not an explicit function of u,
ﬂ%ﬁ H(x,W(x),u) = U V(x,u) + L(x)

Or

B (%, W(x)) = VO(x) + L(x) (4.13)
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But by hypothesis, ﬁo(x) = -L(x) and hence
H(x,W(x)) = 0 : (4.14)

Therefore conditions 1 and 2 of the minimum principle have been satisfied
and u® must be an optimal control, which completes the proof of theorem
4,1, Again it should be noted that the control given by equation (4.5)
is a closed-loop control. This theorem is discussed further in the next
section,

The following theorem indicates an additional relationship
between the Second Method and optimal control.

Theorem 4.2 If there exists a Liapunov function V(x) with

continuous second partial derivatives such that W(x) satisfies

the adjoint equation and if u® is an optimal control, then u®

minimizes V(x,u) and Vo(x) = -L(x).
Since u® is an optimal control, it must minimize H(x,p,u). But
W(x) satisfies the adjoint equation and hence it can be substituted for

pP. Then u’ must also minimize H(x,W(x),u). By reference to equation
(4.12), it can be concluded that u® must also minimize G(X,u) since L(x)
is not a function of u°,
An application of the second condition of the minimum principle
gives
Taf HO,W(x),u) = HO(x,W(x)) = 0

But by use of equation (4.13)

Vo(x) = HO(X,W(x)) - L(x) = -L(x)

and the theorem is proven.
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In the next section, theorems 4.1 and 4.2 are discussed further,
in particular with respect to the classical Hamilton-Jacobi equation, The
existence of Liapunov functions as required for these theorems is also

discussed,

4,4 Hamilton-Jacobi Equation

It was demonstrated, in the previous section, that the optimal
control problem with a constraint on the norm of the control vector is
equivalent to the problem of solving the first-order partial differential
equation ‘o

vo(x) = -L(x) (4.15)
It is of interest to note that equation (4.15) is, in fact, a
special case of the classical Hamilton-Jacobi equation., The Hamilton-
Jacobi equation may be obtained by setting Ho(x,VV(x)) = 0, Thus for the

problem of section 2,3, one obtains

HO(x,W) = W'(x)Ax - [|[B'W()Il + L(x) = 0

or .
HO(x,W(x)) = VO(x) + L(x) = 0

Use could have been made of this fact in the development of the
previous section. However, it was felt that greater insight into the
use of the Second Method was obtained by carrying out the proof in the
manner presented. The knowledge that equation (4.15) is the Hamilton-
Jacobl equation does make it possible to conclude that the existence of
a solution of equation (4.15) is sufficient for optimal control to exist,
This is an advantage over the minimum principle where only necessary

conditions for optimality are given,
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Next, one might ask if solutions of sufficient smoothness,

i.e., continuous second partial, derivatives exist for equation (4.15).
Since the solutions of interest in the following chapter do, ipso facto,
exist, the existence of solutions is not of prime importance here.
However, it is perhaps of interest to look briefly at the problem, even
though a complete answer is not known.

First, it can be shown by example that if the control is scalar
and the system is at least second-order, then there is no solution of
sufficient smoothness. 1In fact, there is no solution with continuous
first partial derivatives. On the other hand, Krassovskii16 has shown
that if B is non-singular and L(x) = 1, then a solution to equation
(4.15) exists with continuous partial derivatives of all order.

Hence, one is faced with a two-fold problem., First, a solution
may not exist; and second, if one does exist, no general method of
obtaining it is known. Therefore the basic optimization problem has not
been solved. The necessary course of action is to obtain an approximate
solution. 1In the next chapter, a method for modifying the Hamilton-Jacobi
equation is followed by the presentation of a special class of solutions,
From these solutions, a method for designing effective sub-optimal control

is developed.
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Chapter 5

EIGENVECTOR SCALAR PRODUCT SOLUTIONS

5.1 Introduction

In this chapter, a special class of solutions of the Hamilton-
Jacobi equation is shown to exist, These solutions, called eigenvector
scalar products, comprise the first of the three major contributions of
this work. The second major contribution, which is contained in the
last section of this chapter, is the development of a method for obtaining
surfaces which bound the optimal isochrones from the outside. The next
chapter forms the third major contribution, a method of designing
effective sub-optimal control systems by the use of the eigenvector
scalar product solutions,

The first part of this chapter presents a method of modifying
the Hamilton-Jacobi equation in order to put the solution into a more
convenient form. This is followed by the preseptation of the eigenvector
scalar product solutions. The last section of this chapter discusses the

problem of bounding the optimum cost functional,

5.2 Modification of Hamilton-Jacobi Equation

A method of modifying the Hamilton-Jacobi equation is presented
in this section which provides a more convenient representation of the
solutions to be discussed in the next section. One approach might be to

make a nonlinear transformation of coordinates in order to reduce the
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Hamilton-Jacobi equation to some elementary form, To date this approach

has not been very useful.

Another approach is to change to another Liapunov function W(x),

given by G(V(x)) where V(x) is the optimum Liapunov function, i.e., a
solution of equation (4.15). In order for W(x) to retain thé basic
nature of a Liapunov function, it will be required that G(V) satisfy the
following conditions:

1) GW)>0if v>0

2) G(O0) = 0O

3) dG(V)/dv>0 if V>0

4) lim G(V) = oo
Vv —= oo

5) d2G(V)/dV2 exists and is continuous.
The effect that this transformation has on the Hamilton-Jacobi
equation can be observed by considering the total time derivative of
W(x). Again ﬁ will be a function of both x and u and hence will be

written ﬁ(x,u)

W(x,u) = d_G%l\'z(x,u)

Now minimizing ﬁ(x,u) with respect to all admissible controlsy
while remembering that V(x) and hence G(V(x)) is not a function of u,

yields

dG(V) min ‘.I(x,u)

min W(x,u) W oib

uel

= MGd%Q VO(x) (5.2)

The minimum of &(x,u) with respect to uéU will be designated by Wo(x).

Then equation (5.2) becomes

Wx) = g%ﬁs'ﬂ(x)
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But, by assumption, V(x) is a solution of equation (4.15) and hence
Go(x) =& =~L(x). Therefore equation (5.3) becomes

g dG(Vv

Wo(x) m  -L(x) —Eé—l (5.4)

Since dG(V)/dv is positive for V greater than zero, G must be

monotone increasing on the interval (0,%), Then according to conditions
1) and 2) above, G must map the interval [0,°°)onto the intervallb,cO)
in a one-to-one fashion. Therefore G possesses a unique inverse function
1 on the interval Ebco), Since both V(x) and W(x) are required to be

positive definite, this is the only region of interest. Therefore
V(x) = T(W(x)) (5.5)

Then substituting for V(x) in equation (5.4) gives

Wo(x) = -L(x)9CAMW(x))) L(nix

(5.6)
Now letting F(W) = Qgiﬁéﬂll, equation (5.6) becomes
WOx) = -L(OF (X)) (5.7)

For the case of time optimal control, L(x) = 1, and equation (5.7) reduces
to
WO(x) = -F(W(x)) (5.8)
By combining the results of this sectlon with the theorems of
section 4.3, the following optimality theorem results.
Theorem 5.1 If there exists a Liapunov function, W(x), with
continuous second partial derivatives, such that ﬁo(x) =
=L(X)F(W(x)) where F(W) = dG(I(W))/dV and G satisfies the
conditions given above, then the control, u®, which minimizes

ﬁ(x,u), is an optimal control,
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The first step in the proof of this theorem is to oBtain the Liapunov
function, V(x), which corresponds to W(x). Substituting W = G(V) into
the definition of F(W) yields

F(G(V)) = dG(I(G(V)))/dv (5.33)
However I is the inverse of G and hence I(G(V)) = V, then equation (5.33)
becomes

F(G(V)) = dG(V)/dv (5.34)

By antidifferentiation G(V) can be obtained from equation (5.34). By
hypothesis this G(V) must satisfy the conditions given above. Hence
V(x) given by I(W) must be a Liapunov function if W(x) is. Condition 5)
on G(V) assures that if W(x) has continuous second partial derivatives

that V(x) will also. Thus the first portion of Theorem 4.1 has been

satisfied.

Next consider V(x,u) which may be obtained as

V(x,u) = Q%éél W(x,u) (5.35)

Since neither W(x) nor V(x) are functions of u, the same control u®

must minimize both é(x,u) and ﬁ(x,u) and hence equation (5.35) becomes
vo(x) = V(X)) yOx)
daw
By hypothesis ﬁo(x) = -L(x)F(W(x)) and therefore one obtains
VO(x) = -L(x) [dv/aw][dG(v)/av] (5.36)
But G(V) = W and hence

av/dw [dG(Vv)/dv] = [dv/dw][dw/dv]

= l.
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Therefore equation (5.36) becomes

VO(x) = -L(x)
Hence V(x) satisfies the conditions of the Theorem 4.1 and u® must be
an optimum control which completes the proof of the theorem, For the
minimum time problem, this theorem becomes

Theorem 5,2 If there exists a Liapunov function W(x), with

continuous second partial derivatives, such that ﬁo(x) =

F(W(x)), then w® is a time-optimal control.

This last theorem embodies the basic concept of the method presented by
Nahi14 for obtaining time-optimal control by the use of the Second
Method. However, by the development presented here, greater insight and
information are gained with regard to the function F.

It should be noted that since equation (5.7) is the modified
Hamilton-Jacobi equation that WYW(x) does not satisfy the adjoint equation
even though ﬁo(x) = -L(X)F(W(x)). This fact can readily be verified by
example,

One transformation, G, which is of particular importance in the

next section is
% o o]
W= G(V) = K, (exp (3 V) - D) (5.9)

Then the inverse of G is given by

Vo= IW) = f(_i 1n(K—££—F— + 1) (5.10)
Therefore equation (5.7) becomes
WO(x) = -L(x) (K{W(x) + Ko JW(x) ) (5.11)
For the time-optimal case, one obtains
WO(x) = -KW(x) - Kp YW(x) (5.12)
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This equation plays an important role in the next section,

5.3 Eigenvector Scalar Products

In this section a particular class of solutions of the Hamilton-
Jacobi equation is developed. Because of the manner in which these
solutions are formed; they are called eigenvector scalar product
solutions. For the material to be presented in the remaining portion of
this chapter and the next chapter, two additional assumptions are added to
the basic optimization problem as formulated in section 2.3. First, only
time-optimal control is considered, i.e., L(x) = l. Second, the
eigenvalues of the matrix A in equation (2.2) must be real, non-positive
and distinct,

In the preceding section, it was shown that time optimal control
could be obtained by finding a Liapunov function, V(x), such that Vo(x) =
-F(V(x)). The following theorem, due to Malkinlo, establishes a necessary
and sufficient condition for G(x) = AV(x) for uncontrolled linear systems.

Theorem 5,3 For systems whose laws of motion are of the form

X = Ax there exist Liapunov functions such that V(X) = AV(x) if

and only if A = mjA{ + myAy +...+ mA, and V(x) is given by

v = (@'0™ (@@ '0" ., (" 'x™
where the A\j's are the eigenvalues of A and q; is the
eigenvector of A' associated with Aj.
The reader is referred to Malkinl® for a proof of the necessity
portion of the above theorem, which is somewhat involved and not of

particular importance for the present discussion, The proof of the

sufficiency of the above theorem is presented below, since it is useful
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in the following work. However, before beginning this proof, consider the
following lemma,
Lemma 5,1 If q is an eigenvector of A' and A is the associated
eigenvalue, and if V(x) = q'x, then
V(x) = AV(x)
For V(x) = q'x G(X) is given by
G(x) = q'; = q'Ax (5.13)
But q is an eigenvector of A', hence
A'q = Aq (5.14)

Or, taking the transpose of both sides of equatiom (5.14), one obtains

qQ'A = A\q' (5.15)

Substituting equation (5.15) into equation (5.13) yields
V(x) = Aq'x = A\V(x)

and the proof of the lemma is completed.

Returning to the proof of the theorem, consider a Liapunov

function of the form
vix) = (g™ (¢2'0m2 | (*'x) (5.16)
Now let Vji(x) = qi'x and then equation (5.16) becomes
V(x) = V()P vy (x)™2 ... v (x)TR
Now taking the total time derivative of V(x), one obtains
V(x) = lelml-lelemz-..Vnmn Foaat m,,vlml,..vn‘“n'l{rn (5.17)
But from lemma 5.1, Gi = \i{Vi{, then equation (5.17) becomes
V(x) = AmViLy,"2, 00 v ™R o, + agmvy L., v
= (Aqmp + Aomp +e.et Apm)V(X)
Thus completing the proof of the theorem,
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Since G(X) turns out to be a function of V(x), one is led to
consider a Liapunov function of the form of equation (5.16) as a possible
solution of the Hamilton-Jacébi or modified Hamilton-Jacobli equation. The
following theorem indicates that there are, in fact, solutions of this
form,

Theorem 5.4 If q is an eigenvector of A' and A is the

associated eigenvalue, then W(x) = (q'x)2 is a solution of the

modified Hamilton-Jacobi equation (5.12), i.e., Wo(x) =

K{W(x) - K;\W(x) where - K; = 2\ and K, = 2 ||B'q| .

As a first step in the proof, consider the following lemma.
Lemma 5.2 For any matrix P such that P = pp' and any matrix
B, 2’88’2 = IB'p II’E.
Writing out P'BB'P in full, one obtains
P'BB'P = pp'BB'pp'
Now consider the p'BB'p portion of this expression., B is an nxr matrix,
while p is an nxl column matrix (vector). Hence the product p°’B is a
1 x r matrix, and B'p 1s an r x 1 matrix. Therefore the product p'BB'p

must be a 1 x 1 matrix, or a scalar, whose value is||§'p||2. Therefore

E'BB'E = p(||B'pII )’
' 2

= |[B'p|l "2 (5.18)
which completes the proof of the lemma, It should be pointed out that B
is not required to be non-singular,

The next step, in the proof of the theorem, is to rewrite W(x)
in a new form. Since q'x = x'q, then W(x) = q'xq'X can be written as
W(x) = x'qq'x

= X'Qx (5.19)
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where Q = qq'. It should be noted that Q is positive semidefinite and
symmetric. Now taking the gradient of W(x), one obtains
W(x) = 20x (5.20)
By substitution W(x) for V(x) in equation (4.5A), ﬁo(x) is given
by
WOGx) = W' (0)ax - || B'W(O| (5.21)
Substituting equation (5.,20) into equation (5,21) and expanding

g'vw(xl) , one obtains

Wo(x) = 2x'Q'Ax - 2V x'Q'BB'Qx
= 2x'qq'Ax - 2yx'Q'BB'Qx (5.22)

But q is an eigenvector of A' and hence q'A = Aq'. From the lemma above,

2
Q'BB'Q = ||B'q |l "Q. Therefore equation (5.22) becomes

WO(x) = 2a(xt Qx) - 2|B'q| VX7 QX
or

WO(x) = 2aW(x) - 2 l[B*ql} yW(x) (5.23)
Hence W(x) = (q'x)2 satisfies equation (5.12) and the proof of the
theorem is completed., Solutions of this type are called eigenvector
scalar product solutions since they are scalar products of eigenvectors
with the state vector,

By the use of equation (5.10), the Liapunov function, V(x),

which is a solution to the Hamilton-Jacobi equation (4,15) is given by

1 -alq'x|
V(x) = = : 1 5.24
(x) = = 1n ( T ) ( )
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It can be easily verified by direct substitution that Go(x) = 1, The

corresponding optimal control is given by

uo(x) = -ghq'x
| Baq x|l (5.25)

The obvious simplicity of the form of W(x) as compared to V(x)
points out the reason for the use of the modified Hamilton-Jacobi
equation. However, V(x) is also important since surfaces of constant
V(x) are surfaces of constant time. This point is discussed further in
the next section, which is concerned with bounding the optimum transition
time,

It should be pointed out that the solutions obtained above cannot
be used directly since the Liapunov functions are only semidefinite.
However, in the next chapter, a method of employing these solutions to
obtain sub-optimal control is developed. Before proceeding to the next
section, it is perhaps wise to consider a particular example of the
solutions presented above.

Example 5.1 The equation of motion of the system are

XZ -2 -3 XZ 1 (5.26)

It is desired to find the eigenvector scalar product solutions for this
problem and to show that they satisfy the modified Hamilton-Jacobi
equation. The corresponding solutions of the Hamilton-Jacobi equation
are also to be found and verified.

By standard methods the eigenvalues are found to be -1, -2

with the corresponding (unnormalized) eigenvectors of A' being (2,1) and
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(1,1). It should be noted that any other set of eigenvectors of A' could
have been chosen since the resulting optimal control and Liapunov function
is unchanged. The above set was chosen for its computational convenience.

There are two solutions of the modified Hamilton-Jacobi equation
which can be.obtained by the above method, corresponding to the two
eigenvectors,

First, for the eigenvalue -1, one obtains
]
Wix) = (q'x)2 = (2% + xy)? (5.27)

and ﬁlo(x) is given by

W%(x) = ~2Wy(x) - 29 Wi(x)
The corresponding solution of the Hamilton-Jacobil equation is

Vi(x) = 1n(|2x1 + x| + 1) (5.28)
while the optimum control as given by equation (5.25) is

uO(x) = Z(2xy * %))

12x] + x5 (5.29)

The total time derivative of Vi(x) is then given by

: 1 (2xy + x)], .
Vi(x = X
1(x,u) Léxl + %ol + é}[lel + X9 | [éxl + x2]

Now substituting from equation (5.26) one obtains

° (2%, + x,)
Vi(x,u) = 1 it S 1) ISPV
135 ['2}{1 + XZI+ 1] [I2x1 + xZI [ le X2 + U.]

1f u®(x) as given by equation (5.29) is now substituted for u, Gl(x,u)

becomes V1°(x)

° 2x7 + X 2xq1 +
Vo) = | (Zx1 + xp) ] [-(le ) - (_1@], )
szl + XZ| + lle + le szl + le
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Hence Vj(x) satisfies the Hamilton-Jacobi equations as predicted. Then

for the second eigenvalue, one obtains

Wy(x) = (q2'x)2 = (%1 + x2)2 (5.30)
and Vy(x) 1s given by

1
V,(x) = 71n(21%1 + xp] + 1) (5.31)

Again it can be readily verified that V,(x) satisfies the Hamilton-Jacobi

equation,

5.4 Bounds on Transition Time

In section 4.2, it was briefly mentioned that if G(x) = -L(x)
then surfaces of constant V(x) become surfaces of constant cost. This
point perhaps needs further elaboration. In the case of time optimal
control, G(X) = -1, and hence integrating with respect to t from t/

to t], one obtains

vixly - vx®) =ty -t (5.32)
If the terminal state is taken to be the origin, then V(xl) = 0, and

t] - tg = V(x%

Thus the value of the Liapunov function at the initial state of the system
is equal to the transition time. If a Liapunov function V, (x) has been
found such that Goo(x) = -1, then Vo(x°) is equal to the minimum transition
time from x© to the origin. Let S, be the surface composed of all points

X such that Vo(x) = T where V,(x) is the solution of the Hamilton-Jacobi
equation—the optimum Liapunov function. Then S, is the set of all

points from which it is possible to reach the origin in a transition time

T, by the use of time optimal control. This surface must be smooth and

44



enclose the origin. Figure 5.1 shows a two dimensional example where
the surface S, has become the closed curve designated by S,. Such a
surface will be called an isochrone, The problem of finding optimal
control is actually a problem of finding the equation for the isochrone,
or V(x).

Since it is normally impossible to obtain the exact solution of
the Hamilton-Jacobi equation, it is necessary to approximate the solution.
If such an approximate solution, V_(x), is found, then let S; be the
surface composed of all points x such that Va(x) = Tg, i.e., the set of
all points from which the origin can be reached in To seconds by the use
of sub-optimal control. The surface 5; must be within or at most tangent
to So as shown in Figure 5,1.

One method for judging the quality of a sub-optimal control is
now obvious. The more nearly the surface S; coincides with the surface
Sos the better the sub-optimal control. However, since the surface S,
is generally not known, such a method of judging the quality of the
approximation is rather academic. Some other method is therefore needed.

One such method is to find another surface S, which is entirely
outside or at most tangent to So, as shown in Figure 5.1. If such a
surface could be found in a relatively easy and straight-forward manner,
the quality of an approximation could be determined in the following
manner. If S; and S, were close, then S} must be a good approximation,
since S] must be at least as close to S, as it is to Sy. However, if
S, and S, were far apart, no conclusion could be reached regarding the
quality of the control since there would be no knowledge with respect to

the relation of §; and S,. This situation should be compared with the
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basic concept of the Second Method where a failure to construct a
Liapunov function generally yields no concrete results with respect to
stability.

It should be noted that the surface $S; does, in general, not
correspond to any physical control situation., If there did exist an
admissible control which would take the system from S, to the origin in
T, seconds, this would contradict the assumption that S, was optimal,
However, there may be points on S, which correspond to points on S,, and
hence from these points the system can be returned to the origin in T,
seconds.

The eigenvector scalar product solutions, as developed in the
preceding section, provide an unusually simple method for obtaining a
So-type surface, Although the surface generated does not uniformly
approximate So from the outside, it is tangent to S, at several points,
as 1s pointed out later.

Consider for a moment the interpretation that one may give to
Liapunov functions which are given by equation (5.24)

V(x) = 1n (M}.I_ + ]_)

1
TP (5.24)

1 is zero. Thus the wvalue

In this case V(xl) is zero if and only if q'x
of V(x°) does not correspond to the minimum transition time from x° to the
origin but rather from x° to the hyperplane defined by q'x1 = 0. Since the
surface V(x) = T, corresponds to the surface Iq'xl = K, a constant, which
is two hyperplanes, V(x) = T, is actually two hyperplanes symmetrically
placéd about q'x = 0. See Figure 5.2 for a two dimensional example of

these V(x) equals a constant surfaces and typical trajectories of the

system,
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FIGURE 5.2 SURFACES OF CONSTANT V(x) FOR
EIGENVECTOR SCALAR PRODUCT
SOLUTIONS
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Since the origin is one.point on the hyperplane V(x) = 0, then
V(x°) must be equal to or less than the minimum transition time from x°
to the origin. If it were greater, then there would exist a control

which would transfer the system to the hyperplane in a time less than

V(x°), which contradicts the optimality of the Liapunov function given by

equation (5.24), Therefore the surface (hyperplanes) V(x) = T, must be
entirely outside or at most tangent to the S, surface.

It is very simple to show that the V(x) = T, surface must be
tangent to So in two places. Since the system is controllable, there must
be two points (one on each hyperplane) from which the origin is reached
in T, seconds as a special case of reaching the hyperplane q'x = 0. See

A

points x% and xB in Figure 5.2. But these points must be on S,; otherwise

they would contradict the optimality of S,. Hence there are two points
at which the V(x) = T, surface is tangent to S,.
Since the n eigenvalues are distinct, the eigenvectors are
linearly independent and hence the n surfaces (hyperplanes) are non-coplanar
(should probably be non-cohyperplanar). Therefore the boundary of the
set of points for which Vyj(x) < T,, {1 = 1,2,,..,n is a closed surface.
See Figure 5.3 where the cross-hatched area is such a set, However every

point on this surface must be outside or on the S, surface, since each
boundary point is on some surface Vi;(x) = T,, and by the argument above,

each such point is outside or on S,. Therefore this surface must be a

Ss surface,

The fact that there are 2n points at which the above S; surface
is tangent to the S, surface can be argued in the following manner. By

the argument presented above, the surface Vj(x) = T, must be tangent to
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So at two points. Since from these points it is possible to reach the

origin in T, seconds, it is also possible to reach all of the other

Vi(x) = O surfaces in T, seconds from these points., Therefore these
points must be on both the S, and the S, surfaces. By a similar argument,
it can be concluded that there are 2n points which are common to S, and

S See Figure 5.3 which shows a typical S, surface generated by this

o°
method,

Thus by the use of the eigenvector scalar product solutions it
is possible to obtain a relatively good S, surface in an unusually simple
manner. The inability to find such surfaces has been a serious difficulty
in designing approximately time-optimal systems in the past. Without such

So surfaces, it is impossible to judge the quality of a sub-optimal system

without actually obtaining the optimal solution,
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Chapter 6

SUB-OPTIMAL CONTROL FOR NON-SINGULAR B MATRIX

6.1 Introduction

In this chapter, a method for designing sub-optimal control
systems is developed, based on the eigenvector scalar product solutions
presented in the previous chapter. The control matrix, B, is assumed to
be non-singular for the work présented in this chapter. The method is
developed first for second-order systems in order to be able to carry
out a geometric representation and interpretation of the method. A
second~order example completes the presentation,

Following the development of the sub-optimal control method
for second-order systems, a generalization to n-th order systems is
made., A third-order example is used to illustrate the generalization.
The chapter concludes with a brief discussion of the method and its
application.

It is perhaps of value to state the basic optimization problem
that is considered in this chapter. For linear systems whose laws of
motion are described by

X = Ax + Bu
where the eigenvalues of A are real, distinct and non-positive and the
matrix B is non-singular, it is desired to find time-optimal, closed-loop
control corresponding to a transition from x° to the origin. The control

region, U, is the set of all control vectors, u, such thatllu||2 = 1,
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6.2 Sub-Optimal Control of Second-Order Systems

In phis section, a method of sub-optimal control of second-
order systems with non-singular control matrices is developed, Bgfore
beginning this development, it is necessary to modify slightly the
eigenvector scalar product solution of the previous chapter.

This modification involves a generalization of the bound on the
norm of the control vector from unity to some unspecified constant, p.
If such a change is made either by transforming the control vector or
by repeating the work of Chapter 5, the Liapunov function, V(x), as

given by equation (5.24) becomes

1 '
- - = -Alg'xl
veo x (PIIE'QII + b (6.1)

and the corresponding optimal control is

-pB'qq'x

(o]
w0 [IB*aq"x || (6.2)

As would be expected, for a fixed initial condition, xo, increasing P
causes V(x°) to decrease, i.,e., the transition time decreases with
increasing control effort, Since the numerical value of V(x) 1is
dependent on both the system's state and on the norm of the control
vector, V(x) will be written as V(x,P) to indicate this relation.
Similarly, u will be written as u(x,P).

A general second-order system with real, non-positive and
distinct eigenvalues, Ay and Ay is considered in this section. For each

2

eigenvalue, there is an eigenvector, designated by q1 and q“ respectively.

Associated with the two eigenvectors are two Liapunov functions given by
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equation (6.1), Vl(x,P) and Vz(x,P), and theilr corresponding optimal
controls ul(x,P) and u2(x,f0.

For some point in the state space, xo, the control given
ul(x,F) transfers the system from x® to some point, xl, on the surface
Vl(x,P) = 0 in minimum time. Typical points and the corresponding
optimal trajectory are shown in Figure 6.1, In the case of second-order
systems, surfaces of V(x) equals a constant become lines. That ul(x,e)
is, in fact, constant during this transition can be shown in the following
manner.,

1

For a given eigenvector, q-, E'ql in equation (6.2) is a

. 1
constant vector while ql‘x is a scalar. Hence u*(x,P) must be a vector

parallel to E'ql; its direction being determined by the sign of the

scalar quantity ql'x. Since the x;(t)'s are continucus functions of

time, it is necessary for ql'x toc be zero before it can change sign.

But if gl

x is zero, then V;(x,p) is also zero. Therefore the sign of
ql'x cannot change during the transition from x© to xl. Hence ul(x,P)
must be a constant vector, whose norm is equal to P and whose direction
is given by g'qlql'x. Figure 6.2 shows a typical control vector, ul(x,P).

Consider now another constant control vector, u, as shown in

Figure A,2 which is equal to the addition of ul(x,P) and any arbitrary

constant vector r perpendicular to ul(x,P). Therefore

u = ul(x,P) +r
where r is any constant vector such that r'ul(x,e) = 0. The transition

time from the point x% to the line Vl(x:P) = 0 is independent of r; this
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fact can be shown in the following manner.
Consider the Liapunov function Vl(x,P) as given by equation
(6.1). Now computing its total time derivative, one obtains

x'qq'x

2
-AMa'x|” + plIB'qq"x||

Gl(x,p) =

= x'qq’' (Ax + Bu)
Aa'xl? + pliE aq ¥l (6.4)

Substituting equation (6.3) for u gives

x'qq'Ax + x'qq'gul(x,p) + x'qq'Br

V) (x,p) = 2
-nig'x|l” + e 1B qq xll (6.5)

However, r 1s perpendicular to ul(x,P) and by the argument above ul(x,P)

is parallel to B'q. Therefore r must be perpendicular to B'q and the
scalar product of r and B'q must be zero, i.e., q'Br = 0. Hence the

third term in the numerator of equation (6.5) must be zero, Therefore

x'qq’Ax 4 x'qq'gul(x,p)

{II(X,P) =2
-Ala'x12 +pil B'qq*xll (6.6)

By direct substitution of ul(x,P) as given by equation (6.2), it can be
readily verified that Gl(x,e) = -1, Since neither Vl(X:?) nor Gl(x,e)
are functions of r it is obvious that the transition time from x° to the
line Vy(x,p) = O is independent of r.

From the argument above, one may conclude that for any control
u only that portion of u which is parallel to ul(x,e) is important in

determining the transition time from an initial point to the line

Vl(x,p) = 0, One may draw a similar conclusion for u? and V2.
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For some initial state, x°, let the magnitude of the optimum
control vectors, ul(xo,Pl) and uz(xo,Pz), be chosen such that
V1(x°,91) = V2(x%@,) = T. Therefore the control vector ui(xo,Pi)
transfers the system from x° to the line Vi = 0 in T seconds. Now
consider a vector u such that the portion of u which is parallel to ui
is equal to ui(xo,ei). See Figure 6,3 for a graphical representation of
this situation. The magg}tude,?i, of the portion of u which is parallel

to ui may be obtained from the scalar product of u and a unit vector

parallel to ul, Hence

Pi = u'ui(xo,l) (6.7)
Since only the portion of u which is parallel to ul has any
effect on the time necessary to transfer the system from x° to vy = 0,

u must transfer the system from x°

to both Vl = (0 and Vo = 0 in the same
time, But V; = Vo = 0 can only occur at the origin, hence u must
transfer the system from x® to the origin in Vl(xo,pl) = Vo(x%p) = T
seconds.,

Since setting Vl(xo,pl) = Vz(xo,Pz) specifies only the relative
magnitude of @) in terms of O), there is an infinite number of vectors
which satisfy this condition, However, only one of these vectors has
unit length. This is then an admissible control which transfers the
system from x° to the origin in a finite time, Vl(xo,Fﬁ). This is, in
general, not the minimum time, but it is an acceptable compromise between
system complexity and speed of response, as is shown later.

Several significant aspects of this sub-optimal control method

should be noted. First, once the control is obtained, it is constant

for the entire transition time. For small disturbances, the control
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FIGURE 6.3 REPRESENTATION OF A VECTOR
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CONTROL VECTORS
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varies only slightly, which is helpful in mechanizing the centroller.
The control vector does not require rapid variations after its initial
setting and hence only a minimum of recalculation of the control vector
is necessary during the transition time. This should simplify the
instrumentation of the controller,

Second, by the use of this method the transition time from any
point to the origin can be easily obtained. This may be done by first
setting the norm of the control vector equal to unity and then solving
Vl(xo,pl) = Vz(xo,pg) = T for T, which is the desired transition time.
Isochrones can be found by choosing a value of T and finding the set of
all points x such that Vl(x,pl) = V2(x,ez) =T and llull = 1,

An interesting aspect of such isochrones is that for a given T,
they are quadratic in terms of x; and x;. This fact may be useful in
implementation of the sub-optimal control method.

This method also makes it possible to obtain easily and

[o}

directly the actual trajectory of the system from x~ to the origin.

This can be done in the following manner, After finding the transition

time, T,, as described above, choose any time T<T,; then solve for the
point x such that Vl(x,pl) = V2(x,pz) = T withp and @2 as given above.
This is the state of the system at T seconds before reaching the origin,
or T, - T seconds after leaving the initial state. This allows one to
obtain the position of the system at any time during the transition of
the origin with no knowledge of any previous state, thus eliminating any
accumulation of error. The work involved is strictly of an algebraic

nature; it is not necessary to solve any differential equation. Both of
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these last two aspects of the method aid one in evaluating whether the
performance of the sub-optimal system is satisfactory,

One further aspect of this method should be mentioned because
of its importance relative to the implementation of the method. The
simultaneous solution of the equatioms V;(x9,P;) = V,(x%,() and

fluil = 1 is an algebraic manipulation, although it is not trivial.

This should be contrasted to many of the presently advocated methods for
which it is necessary to solve simultaneously the usual nonlinear
differential equations of the two point boundary value nature. The
computational advantage is obvious from a hardware standpoint. Since
these computations are algebraic, it is possible to carry them out
continuously on an analog computer Lo create continuous control.

Before considering a numerical example to illustrate the method,
it is perhaps of value to outline the complete method for reference.

1) Obtain the eigenvalues and eigenvectors of the matrix A’.

2) Obtain the two Liapunov functions as given by equation

(6.1), Vi(%,p) and V,(x,p), and their corresponding
optimal controls, ul(x,P) and uz(x,P).

3) For a given point, x©, solve the relations p, = utul(xo,1)
to obtain u; and ujp in terms of P1 and e2-

4) Solve V{(x9,p;) = V2(x°,pz) and |lull = 1 simultaneously
to obtainel and f2-

5) By the use of the relations obtained in step three, find
u, the desired sub-optimal control.

A method of mechanizing the last three steps of this procedure by the
use of a digital or analog computer to create a closed-loop system is
shown schematically in Figure 6.4. Two points should be emphasized

again. First, once the control is determined, it remains relatively
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constant,

Second, the operations required of the computer are strictly

algebraic. It should also be noted that although the procedure is

given in

a step-by-step fashion, the control can be computed continuously

by the use of analog computer,

with the

Example 6,1 In order to illustrate the method of sub-optimal

control developed above, consider the following system

X1 0 1 X1 1 -1/2 uy

(6.9)
X2 Y2
It is desired to transfer the system from the point x° = (2,1)
to the origin with u = 1.

By standard methods the eigenvalues are found to be -1 and -2

corresponding eigenvectors of A' being (2,1) and (l,l). The

two Liapunov functions as given by equation (6.1) are

The corre

VI(X,P) = In (szl + x2| + 1)

5 o (6.10)
1 4lxq + xo
Vo(x,p) = 5 In (—l——l———z— + 1) (6.11)
Vs p
sponding optimal controls as given by equation (6.2) are
L (x,0)
ul(x’P) 2%, + X, 1
u2(x ) - 12x.+ x|
2 (X,P)] 17 *2 0 (6.12)
2
ul(x,pfw X+ %, ZAE
= P (—=
u%(x’P)- le + x2| ]./'J__S‘ (6.13)

63



This completes steps one and two in the procedure outlined above.
Now for x° = (2,1), ul(xo, 1) and u2(x°, 1) become
ul(x0, 1) = (-1,0) (6.14)
u2(x°, 1) = (-2A5, -2/N5) (6.15)

Using the relation py = u’ui(xo, 1), one obtains

pL = "4y
pp = -ZuI/JE —uzﬁJg

Then solving for uj and u, in terms of Pl and p, yields

up = =pP1

uz = +2p1 - V5 py
Now setting ”u”2- 1, one obtains
(-o)? + (-2p) +45 p)? = 1 (6.16)

Setting V1(x°,py) = V5(x°,0,), one obtains

In c§§I +1) = 1/2 1n Q7§%; + 1) (6.17)

By solving equations (6.16) and (6.17) simultaneously, it 1s possible
to obtain py and p,. If this is done the solution obtained is

p]. = 0,645

pp = 0.236
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Therefore a control vector u = (-0,645, 4+0.763) transfers the system

from the point x© = (2,1) to the origin in Vl(xo,pl) = 1,58 seconds.

6.3 Generalization

In the previous section a sub-optimal method was developed for
second-order systems. A generalization of this method to n-th order
systems i1s presented in this section., Since all of the proofs and
arguments carry over directly to the n-th order case, only the conclu-
slons are presented here.

In the n-th order case, there are n real and distinct eigenvalues

N1, A2, ..., Ap and hence n linearly independent eigenvectors ql, qz, cass

q". Associated with each eigenvector is a Liapunov function given by
equation (6.1) Vl(x,p), Vo(x,0), ..., V,(x,p) and their corresponding
optimal controls ul(x,p), uz(x,p), ooy un(x,p). As before, for some
point in the state space, x©, the control given by ul(x,p) transfers the
system from x° to some point, xl, on the hyperplane Vi(x,p) = O in
minimum time. Again the control ui(x;p) is constant during the entire
transition time.

By an argument identical to that presented in the previous
section, it can be shown that for any control u only that portion of u
which is parallel to ui(x,p) affects the transition time from any initial
point to the hyperplane Vi(x,p) = O.

If for some initial state x° a control vector u is chosen such
that V;(x%,py) = Vy(x%,p;) = ... = V (x%,p,) where p = u'ui(x,l), then

this control must transfer the system to the origin in Vl(xo,p) seconds.
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Since there are only n-1 equations in the n unknowns, P, Ppje-e, Pns
there is an infinite set of control vectors which satisfy these equations.
From this set, there is only one vector whose norm is equal to unity.
This is an admissible control which transfers the system from any point
x% to the origin in a finite, although usually not minimum, time,

Then the procedure for obtaining a sub-optimal control can be
stated in the following steps:

1) Obtain the eigenvalues and eigenvectors of the matrix A'.

2) Obtain the Liapunov functions as given by equation (6.1),

Vi(x30) Vo(X30)5 weo, V (x,e) and their corresponding

optimal controls, ul(x,e), u? (x,p), sy un(x,e).

3) For a given point, Xo, solve the relations p; = u ui(xo iy
to obtain uy in terms of the p;.

4) Solve Vl(xo,el) = VZ(XO:PZ) = L., = Vn(xo,@n) and Null =1
simultaneously to obtain @, P2, ..., Pn-

5) By the use of the relations obtained in step three, find u,
the desired sub-optimal control.

As before the last three steps in this procedure can be mechanized by the
use of a digital or analog computer in order to create a closed-loop
system,

All of the features of this method which were pointed out for
second-order systems carry over directly for n-th order systems.

Example 6.2 As an illustration of the above procedure, consider

the third-order system shown in Figure 6.5. The equations of

motion may be written as

o = - -1 - - —
x, 3 1 o] x 1 0 0] u
Xp| = O -2 1 9/ + [0 1 0 up
X3 0 0 -1 X3 0 0 1] ug
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v

It is desired to find a sub-optimal control which transfers

the system from the point x° = (1,2,3) to the origin. The

norm of the control vector is constrained to be equal to or

less than unity.

The eigenvalues are -1, -2, and -3 with the corresponding
eigenvectors of A' being (0,0,1), (0,1,-1) and (2,-2,1). The Liapunov

functions are found from equation (6.1l) to be

X
Vi(x,p) = 1n (23

+ 1)

‘ V2 %y - x
Vz(XyP) = El-ln ( | ZP 3l + 1)
1 2 -2
Vy(x,p) = 3la (IXL T P2t xl

e

The corresponding optimal controls are then

1 -
u;(x%,1) 0
l,.0 X3
ul@x°, 1) = - ¢ 0
2 ! |X3|)
us (x%, 1), L
ui(xo,l) 0
u%(xo, 1) = - (u I/ﬁ
Ix; - X3
ug(xo,l) IN?
3x0,1 2/3
ul(x 9 ) /
3,.0 2x] - 2x%2 + x3
u X 1 = - '2 3
2(x%, ) ( 12x; - 2%y + %3] ) /

u3 (x°,1) -1/3
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By the use of the initial state x° (1,2,3) and the relations

Pi ] u'ui(xo,l), it is possible to solve for the components of the

control vector in terms of the Qy’s.
up = -P/2 + 2 Py -3p4/2
u = - P+ V2© p,
u = - Py

By setting V;(x°,p) = V,(x%,py) = V5(x°,p3), one obtains the following

two equations

In(2- 4 1) = 172 m@2 6.18
P1 P, + 1) ( )

In(—3- 4+ 1) = 1/3 In(—L + 1) (6.19)
Py P

In order to obtain the desired control vector, it is necessary
to solve equations (6.18) and (6.19) simultaneously with {fJull = 1. The

answers that one obtains are

Pl = 0.714

€, 0,0543

P3

0.00716

The desired sub-optimal control is then
u(x%) = (-0.291, -0.637, -0.714)
This control transfer the system from x° = (1,2,3) to the origin in

1.65 seconds.
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6.4 Discussion of the Method

In the previous sections, a method of obtaining sub-optimal
control of systems in which the control matrix is non-singular was
developed. Every sub-optimal control method should satisfy two require-
ments., First, the method should make it easy to design and implement the
sub-optimal control system, Second, the performance of the sub-optimal
control system should be acceptably close to the true optimum,

This method has several aspects which assist in the design and
implementation of the sub-optimal system., These points have been
discussed in section 6.2, but are repeated here for reference. In the
absence of a disturbance the control vector, once obtained, remains
constant until the system reaches the origin. The transition time from
any point to the origin as well as the trajectory to the origin can be
obtained readily. The isochrones are easy to find., In designing a
closed-loop control system using this method, it is necessary for the
controller-computer to solve only algebraic equations thus allowing
continuous control,

Until now, the quality of the performance of the sub-optimal
has been ignored. It is shown in this section that the quality is
acceptable. Because of the difficulty involved, it is not possible to
obtain the true optimal solution and hence it is necessary to use the
approach discussed in section 5.4. 1In particular, it is shown that the
sub-optimal isochrone, 8j, is tangent to the optimum isochrone, S, at
several points,

As was pointed out in section 5.4, there must be two points on

the V;(x,1) = T, surface from which the origin is reached in T, seconds
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as a special case of reaching the surface using the control u = ul(x,l).

Since the system reaches the origin in T, seconds, it must also reach all
of the V;y(x,1) = 0 surfaces in the same time. Hence Vi(x9,1) = V2(x°,p2) =
cso ™ Vn(xo,Fh), where Dy = ul(x ,1)'ui(x°,1), is satisfied at this point.
The control ul(xo,l) therefore satisfies all of the conditions of the
sub-optimal control and hence it is the sub-optimal for these points,
Therefore these points must be on the sub-optimal isochrone. But it is
shown in section 5.4 that these points are also on the S, surface. Hence
the sub-optimal and optimal isochrones must be tangent at these points,

In a similar fashion, one could argue that there are two points
on each V;(x,1) = T, surface which are on both the optimal and sub-optimal
isochrones. Hence there must be 2n points at which these surfaces are
tangent, Since both of the surfaces are smooth, it is logical to assume
that they are close in some region about each of these points,

One could get a direct measure of the quality of the sub-optimal
control by determining the optimal isochrones for particular problems
such as the ones in examples 6.1 and 6.2. However, the advisability of
this is highly questionable. First, as was pointed out in Chapter 2,
the computational labor involved in obtaining the optimum solution for
even one point is horrendous for all but trivial problems., To find a
complete set of such points is almost unthinkable. Second, if one were
to carry out such computations, the most that one could conclude would be
that the sub-optimal method was good or bad for that particular example.

It appears reasonable from the above points to conclude that

this sub-optimal control method represents an acceptable compromise
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between system complexity and speed of response.

Although the method presented in this chapter is significant and
important in its own context, its major significance is in providing an
underlying framework for future research., 1In the case of non-singular
B matrix, several other sub-optimal methods have been suggested. None
of these methods, however, have, as of yet, produced a sub-optimal
control better than that presented here., The number of practical systems
for which B is non-singular is limited and hence additional research is

needed to extend this method to the case where the B matrix is singular.
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Chapter 7

CONCLUSIONS AND FUTURE RESEARCH TOPICS

7.1 Conclusions

In this work, the Second Method of Liapunov was combined with
the minimum principle to form a basis for a method of closed-loop,
approximately time-optimal control of linear systems with bounded control
of linear systems with bounded control norm. The first step was to show
that solving the basic optimization problem is equivalent to solving a
first-order partial differential equation which is identical to the
Hamilton-Jacobi equation. Although it was not possible to solve this
equation is general, a special class of solutions was shown to exist
which provide a foundation for a sub-optimal control method.

By the use of these solutions, called eigenvector scalar
products, it 1s possible to find surfaces which bound the optimal
isochrones from the outside. The inability to find such surfaces has
been a serious difficulty in designing approximately time-optimal
systems in the past., Although this surface does not approximate ihe
optimal isochrone uniformly it is shown that the two surfaces are tangent
at 2n points.

The elgenvector scalar product solutions also form a basis for
sub-optimal control method for systems in which the control matrix is
non-singular. This method has several advantageous features. First,
in the absence of disturbances, the control vector, once obtained,

remains constant until the system reaches the origin. Second, the
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transition time from any point to the origin as well as the trajectory
to the origin can be readily obtained. The sub-optimal isochrones can
also be easily found. Third, in designing a closed-loop system using
this method, the controller-computer must only solve algebraic equations
and hence the control can be computed continuously. This should be
contrasted with many of the present methods which require on-line
solution of two-point boundary value problems and hence discrete control.

Although obtaining the optimal isochrones was computationally
impossible, it was shown that the sub-optimal isochrones are tangent to
the optimal isochrones at 2n points by the use of the eigenvector scalar
product isochrones. Hence it appeared reasonable to conclude that the
performance of the sub-optimal system was an acceptable compromise
between system complexity and speed of response,

There are three major contributions of this work. First, the
discovery of the eigenvector scalar product solution, second, the
bounding of the optimal isochrones, and third, the design of sub-optimal
control systems by the use of the eigenvector scalar product solutions.

It should be pointed out again that the development of this
sub-optimal method is still incomplete. Since only systems in which
th; control matrix is non-singular can be treated at present, the
number of practical systems to which the procedure can be applied is
limited. Hence, further research is needed to extend this method to

the case of singular control matrix.

7.2 Future Research Topics

As pointed out previously, the number of practical systems in

which the control matrix is non-singular is very limited. Hence, in
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order to make the material presented here of practical importance, it

is necessary to remove this restriction. Current research is pointed
toward this problem. It was noted in Chapter 5 that the eigenvector
scalar product solutions do not require that B be non-singular.
Therefore, these solutions can be used in creating a sub-optimal control
method for systems in which the control matrix is singular. Preliminary
regults with second- and third-order systems indicate that this approach
should be successful.

There are other extensions to the sub-optimal method which need
to be made, First, it is hoped that the requirement for real eigenvalues
can be removed. Second, it would be of value to extend the above method
to some nonlinear problems. The most encouraging area at present is
bilinear systems, in which the state and control variables are separately
linear but jointly nonlinear. Because of their close relation to linear
systems, it appears quite possible that the above method can be
successfully applied to bilinear systems.

It is hoped that by completing these extensions that the
practical significance of the method presented here will be greatly

increased.
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Appendix A
SUB~OPTIMAL CONTROL METHODS USING THE SECOND METHOD

A.l Introduction

In this appendix, several methods of designing sub-optimal
control systems by the use of the Second Method of Liapunov are
presented., The methods presented here are not intended to be an
exhaustive compilation of such methods but rather were chosen because of
their relation to the material in Chapter 4.

Each of the following three sections begins with a brief

discussion of the concepts or ideas underlying that method. This is
followed by a short presentation of the method which is then illustrated
by a numerical example. The sections conclude with a discussion of the
advantages and disadvantages of each method. For each of the methods
presented, the uncontrolled system is assumed to be at least stable in
the sense of Liapunov.

Unfortunately, all of these methods have three basic problems:

(1) they are approximate, (2) either no estimate of the approximation
error is possible, or the estimate is overly conservative, and (3) it is
necessary to choose a V(x) for which no general procedure is presented.
Hence these methods were never widely accepted,

A.2 Estimation of Transient Behavior

One of the first uses of the Second Method as a design tool was
; . 11, 12
in the estimation of transient behavior . In particular, it was
used to obtain an approximation of the settling time. By making this
approximation of the settling time as small as possible, it was argued
that the speed of response would be decreased. Johnson13 has recently

emp loyed such an approach for the design of a class of sub-optimal

control systems.,
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Consider a positive definite scalar function, V(x), whose total
time derivative, G(X), is negative definite. Then by the use of the
Second Method, one may conclude asymptotic stability of the origin.
However, although one knows that the motion tends toward the origin the

rate at the origin is approached unknown. Now define n as

min -ngz
T ox V(x) (A.1)
Then .
V(x) € -pV(x) (A.2)
which may be solved to give
V(x(t)) = V(x(0))e " (A.3)

Thus, given the value of V(x) at t = 0, an upper bound on the value of
V(x(t)) at any time t > O can be obtained by the use of equation (A.3).
Therefore from the initial state x° the state of the system must be
found within or on the surface V(x) = V(x°)e™\l after t, seconds. For
an illustration of how this procedure can be used to estimate settling
time, consider the following example.

Example A.1 The equations of motion for the system are

(A.4)

It is desired to find an upper bound on the time that it takes
the system to get from the initial condition x° = (1,0) to

within the area defined by (xl)2 + (xz)z'f 0.01.
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In this case it is necessary to find the largest value of K
such that the surface V(x) = K lies entirely within or at most tangent
to the surface (xl)2 + (x2)2 = 0,01, See Figure A.l. Then by the use

of equation (A.3), the settling time, t_, ig

- 1 K
ts Y_\ln (V_(XES-) (A.5)

However before this can be done it is necessary to find r\.

Let G(x) be defined by the quadratic form o(x) = -x'Qx where Q

is a symmetric positive definite matrix. Then V(x) is the quadratic
from V(x) = x'Px where P is a positive definite symmetric matrix which

is the unique solution of the matrix equation

A'P + PA = -Q (4.6)

Kalman and Bertram!? have shown that n 1is given by

n = minimum eigenvalue of gg'l

A

Then by the use of equation (A.6), P is given by

Now let Q be

L]
I

and N\ is equal 0.775,

For this V(x), K is found to be 7.64 x 103, The settling

time as given by equation (A.5) is

7.64 x 1073
S )

t = -1
s = 5775 M (

= 8.35 seconds
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FIGURE A.l ESTIMATION OF SETTLING
TIME
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This method of estimating the transient behavior of systems
has several disadvantages. First, the method is approximate and no
knowledge of the quality of the approximation is known. Second, the
value of M\ and hence tg depend on the particular V(x) used. No method
of picking V(x) is known. Third, it 1s necessary that G(x) be negative
definite. This 1s very difficult to attain in practice except for

linear systems.

A.3 Kalman-Bertram Method

In 1960 Kalman and Bertraml? presented a method for designing
approximately time-optimal control systems. Thelr method was based on
the knowledge that for a closed, bounded control region, U, the control
vector is always on the boundary. They suggested minimizing the time
derivative of V(x) arguing that this would make V(x) approach zero most
rapidly, and the state of the system should reach the origin in minimum
time.

Consider the system

X = Ax + Bu (A.7)
where the control region U is defined by the set of all control vectors
u such that |u;| <M,  {=1,2, ...,n and M; are positive constants.
Choose arbitrarily a positive semidefinite matrix, Q, and then find the
positive definite matrix, P, which is the unique solution of the matrix

equation
A'R +PA = -Q (A.8)

Now let V(x) be defined by V(x) = x'Px and V(x,u) is

G(x,u) = -x'Qx + 2u'B'Px (A.9)
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In order to minimize V(x,u) with respect to all admissible controls, it
is necessary to minimize the second term in V(xyu). To minimize this
term, each component of u must have its maximum magnitude in the

direction opposite that of the corresponding component of B'Px.

Therefore
u; = -Mysgn [ (B'Ex)y] (A.10)
As an 1llustration of this procedure consider the following example,
Example A.2 The equations of motion of the system are

xl 0 1 xl 1 1 ul

X9 -2 -2 X9 0 1 uy

It is desired to drive this system to the origin from any initial state

in minimum time.
The first step in the procedure is an arbitrary choice of Q.

In this case let Q be

in which case P as obtained from equation (A.8) becomes

I
i

Then by the use of equation (A.10) the control vector components are

found to be
u; = -Mysgn(2x,)

u, = -Mzsgn(le + x3)
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This method has several advantages. First, it provides a
closed-loop solution of very simple form. The method is relatively easy
to apply to high-order and multiple input systems. The control matrix
B is not required to be non-singular.

The main disadvantage of the method is the lack of a procedure
for choosing the Q matrix and hence V(x). Since the solution depends
strongly on V(x), it would be highly desirable to have a procedure for
choosing the '"best' V(x) or at least an iterative method for improving
on an initial choice. Azain the method provides only approximately
optimum performance and no procedure for evaluating the quality of the
approximation is presented. The resulting sub-optimal control system

normally experiences chattering near the origin which degrades its

performance.
Ab The Nahi Method
Nahil% has recently presented a method of designing sub-optimal

control systems based on the concept of forcing

This method was based on two arguments. First, minimizing G(X,u) would
minimizing the response time. Second, forcing minimum G(x,u) to be less
than or equal to -Klv(x) - 2K24 V(x) would make the response time finite
as is shown below,

The systems to be considered must be represented in the

following form

X = Ax + Bu (A.12)

where B is a non-singular matrix and the control region U is defined by
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the set of all contrul vectors u such that |lull £ L. Choose arbitrarily
a positive definite matrix Q, and find the positive definite matrix, P,
which is the unique solution of the matrix equation
A'P + PA = -Q (A.13)
Now let V(x) be defined by V(x) = x'Px and then e(x,u) is

G(x,u) = -x'Qx + 2u'B'Px (A.14)

In order to minimize V(x,u) with respect to all admissible controls, u

must be given by
- B'Px
Il B'Px|| (A.15)

Then substituting equation (A.l5) for u into equation (A.l4) gives

min o ox? - q_i—_j——_ﬂ
e V(x,u) x'Qx - 2 {x'PB'BPx (A.16)

Nahil® has shown that there exists two positive constants, K| and K,

defined by
Ky = minimum eigenvalue of 92-1 (A.17)
(K2)2 = minimum eigenvalue of PBB' (A.18)
such that the following conditions are satisfied
1. x'Qx > le'Ex (A.19)
2. x'PBB'Px > (K,)’x'Px (A.20)

Then substituting equations (A.19) and (A.20) intv equation (A.l6) gives

min ?
we U V(x,u) < -Kyx'Px - 2K2'\Jx'gx

< -KV(x) - 2K; \IV(x) (A.21)
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Now for some given initial state x(0), equation (A.21) can be solved to

obtain

2 1 (Kl\lv(x(t)) 2 (Klvv(x(O)) 1

+ 1) - + < -t
Ky 2K, Ky 2K, =

If v(x(t)) 1s set equal to zero, then t hecomes the transition time from
x(0) to the origin, tg,

K'qV 0
t 42_1(_1—(}(_(._&._’_1

o = Kl n 2K2 (A.22)

Hence the transition time is noiL only known to be finite, but also an
upper bound on it is obtained. As an illustration of the above procedure
consider the following example.

Example A.3 The equations of motion of the system are

Xy 0 1 Xy 1 -1/2 uy

= +
: . (A.23)
Xz -2 '3 XZ 0 1 UZ

It is desired to design a sub-optimal control system which
transfers Lhe system from any initial state to the origin in
a finite time., An upper bound on the transition time should
also be obtained.

The first step in the procedure presented above is to

arbitrarily choose a Q matrix. For this problem let Q be
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in which case P as obtained from equation (A.1l3) is

2 1

g
]

1 2

Then the desired sub-optimal control as given by equation (A.l53) is

1

'\/ > — (2%; + X,, 3x2/2)
4(}{1) + 4x1x2 + 13(X2) /4

From equations (A.17) and (A.18) the coanstanis K and K are

1 2

found to be
Kl = 1.0

K2 = 1,224

Then by the use of equacion (A.22), che upper on the transition time is

2(x1)% + 2x1x9 + 2(x2)?

= 2n (\l 2.45

t

0 + 1)

This method has two serious disadvantages. First, the control
matrix, B, must be non-singular. This, in general, is not true in
practice. If B is singular, then K, is zero, and the transition time is
infinite. Second, as pointed out in the previous section, there is no
procedure for choosing the "best'" Q matrix.

On the other hand, the method does provide a relatively simple
closed~loop solution. The transition time is finite and an upper bound on
it is readily obtained. However, there is no means of judging how close

the ctransition time of the sub-optimal system is to the optimum,
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SECTION II

NONLINEAR STABILITY OF COUPLED CORE REACTORS

Chapter 1

INTRODUCTION

A critical reactor which consists of two or more independently
subcritical cores 1s a coupled core reactor. This description could
undoubtedly be applied to many types of reactors including heterogeneous
critical assemblies with the individual fuel-moderator cells treated as
coupled cores. Of immediate practical importance, however, is the case
of adjacent power reactors constituting a critical system, and particularly
of the clustering of nuclear rocket engines.

In a coupled core reactor, the coupling effect results from
neutron leakage to a given core from each of the other cores. Because
leakage neutrons travel between cores in a finite time, the behavior of
a given core depends not only upon processes occurring at the present
time, but also upon the past history of the other cores. Herein lies the
uniqueness of the problem., The set of differential equations describing
the kinetics of each core contains, due to the leakage of neutrons from
the other cores, source terms with the argument of the dependent variable
retarded or delayed in time. Systems of equations of this type are
systems with delay, systems with lag, delay-differential systems, or
differential-difference systems.

The static and dynamic behavior of coupled core reactors has
been investigated previously (1,3,16,17). Kinetics studies have been

restricted to conventional linear analyses wherein the frequency response
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of the zero power transfer function of each of the cores is examined.
Additionally, conclusions on stability have been drawn by applying the
Routh Test (18) to the zero power transfer function of a given core. 1In
this method, the exponential term in the characteristic equation must be
replaced by a ratio of polynomials, specifically the Pade or cut-product
approximants (18)., The roots of the characteristic equation for a

linear system can be located exactly, and stability determined., Stability
criteria for characteristic equations containing exponential terms will be
discussed in Chapter 3.

It would be useful to develop a method by which the stability of
coupled core systems could be readily examined. During the last three
decades, researchers have found that the most universal method of
investigating stability is the Second Method of Liapunov (10). It is
natural, therefore, that a technique based on Liapunov's theory be
derived for this problem. This approach has several advantages over the
previously mentioned methods for coupled core systems., The Second Method
does not require that the system be linear, and it is known that the
reactor kinetics equations are nonlinear for power reactors such as rocket
systems with temperature induced reactivity effects. It will be seen,
moreover, that the Second Method is more useful than other methods even in
solving linear problems in differential-difference systems. The Second
Method yields only sufficient conditions for stability, so the results are
elther exact or conservative., The use of approximants for the exponential
term of the characteristic, however, leads to conclusions that the system

1s stable when it is not in many cases.
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By use of the Second Method, the extensive manipulations required
to investigate each core separately will be eliminated, and stability will
be discussed in terms of the system as an entity. Finally, the recent use
of the Second Method in conjunction with optimal control system synthesis
(6,7) dictates the understanding of the Second Method as applied to
differential-difference systems toward possible further study in the area
of optimum control of coupled core reactor systems,

There are no fundamental changes in Liapunov's theories in
applying them to systems with delay. The theory of differential-difference
equations; however, differs considerably from the theory of ordinary
differential equations in questions of uniqueness, existence, and
asymptotic behavior, It is necessary to demonstrate the unique properties
of differential-~difference equations to understand the requirements for
the Liapunov function in the presence of time delay. The problem of
selecting a suitable Liapunov function is one of paramount importance in
studying the stability of motion of ordinary differential equations.

This problem is more difficult for differential-difference equations.
For example, the presence of cross products of the unknown variable with
and without the retarded argument raises questions as to the sign
definiteness of the functions involved, Some new concepts such as
Krasovskii's Liapunov functional must be introduced.

When the difficulties mentioned above are surmounted, the
usefulness of the Second Method in dealing with the stability of time
delay systems in general and coupled core reactor systems in particular

can be shown.
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This report provides the preliminary basis for solving the
problem., Chapter 2 contains the derivations of the reactor kinetics
equations for coupled core systems. This development includes the
representation of these equations in a form amenable to analysis by use
of Liapunov's Second Method. Chapter 3 is a survey of the elements of
the theory of differential-difference equations, including definitions,
notation, and the question of stability or asymptotic behavior with
specific examples. The Second Method of Liapunov is introduced in
Chapter 4 with the emphasis on the extension of the method to time

delay systems.
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Chapter 2

THE KINETICS EQUATIONS FOR COUPLED CORE REACTOR SYSTEMS

Introduction

In the development that follows, a logical derivation of the
kinetics equations based upon a general knowledge of the processes
involved is made, The model is that of a point reactor with the various
characteristic parameters representing average values with respect to
space. All the neutrons that participate in the processes are of thermal
energy. Because each core of the system is treated separately, the

spatial effects of the variables are actually considered to some degree.

Neutron Kinetics

I1f there is a density n(t) of thermal neutrons with a mean
lifetime £, in a given core, the net rate of disappearance of these
neutrons is n(t)/£,. The effective multiplication or total number of
neutrons produced in the next generation per original neutron is k. A
fraction of the produced neutrons appears some time after fission occurs.
The total delayed fraction is P, consisting of the sum of the Bj, the
fractions attributable to M distinct groups of atoms which decay with
decay comstant kj to produce the delayed neutrons. The density of the
precursor atoms is Cj(t), and the delayed neutrons appear at the same

rate as the precursors decay. The net production of neutrons is

M
el -
2 n(t) %n(t) + jf:l Aje;y(E), (2.1)
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where p 1s (k-1)/k, the reactivity, and £ is £5/k, the effective
lifetime, which is assumed to be constant. The net production of the

jth group of precursor atoms is

B
7 B = Aqey(o)- (2.2)

Expression (2.1) is incomplete because neutrons may appear from
other sources which are generally external to the system. In the next
section the special delayed source term for this problem is discussed.

A general source S(t) is defined and Eqs: (2.1) and (2.2) are equated to
the rates of change of the neutron and precursor densities, respectively.

The result is

M
d2£t2 - _Q§£l n(t) - % a(t) + X chj(t) + S(t) (2.3)
j=1

de(t p
%2-1 - i n(e) - Ajeq(t).

The reactivity is a function of time because changes are introduced by
means of an external device such as a movable neutron absorber,

Eqs. (2.3) as written are linear with a time varying parameter,
p(t). It will be seen that the reactivity can also be a function of

other system variables. A nonlinear system results,

The Delayed Source

A coupled core reactor consists of N cores, and neutrons leaking
from the kth core influence the ith core by contributing a source of
thermal neutrons. This source is proportional at a given time to the

neutron density in the kth core at a time T4y earlier, where Tjy is the
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delay time for the effective exchange of neutrons between the cores to
occur. If the constant of proportionality is Q4), the total source in
the ith core is

N

z 0y gt = Tip)e
ik Pk ik
k=1,%1 (2.4)

It is conceivable that there are additional terms due to
reflection of leakage neutrons back to a specific core. This means that
the past history of the ith core as well as of the kth core influenced
the ith core. This term would be

N

z Y n.(t ~ T )
k=l,41 TE T ik’?

where and t,, represent the constant of proportionality and delay
Yik ik

time respectively for the second order effect. This process is
illustrated for a three-core system in Figure 2,1. There could be even

higher order effects but all except Eq. (2.4) will be neglected for now.

Power Reactors

Egs. (2.3) represent the behavior in time of a core at zero
power. In a power reactor, a coolant flows through the core removing
the generated energy in the form of heat, In this case the intrinsic
reactivity effects due to the temperature changes in the core appear.
Normally, the change in the physical dimensions of the system, which
affects neutron leakage, causes reactivity variations., In a hydrogen
cooled nuclear rocket, an additional effect results from changes in the
coolant density, hence in the neutron moderating properties of the
system, since hydrogen is a strong moderator. In any case, the reactivity

is some function of temperature.
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FIG. 2.1

FIRST AND SECOND ORDER COUPLING EFFECTS IN
A THREE-CORE SYSTEM.



A lumped parameter or point model for the heat removal process

in each core will be assumed. In a rocket, especially, the parameters and

temperatures of Interest vary strongly throughout the core. Proper
sélection of mean values of variables and parameters to lead to a fairly
accurate model is then of great importance.

Over a period of time, the net accumulation of energy in a core
is equal to the total energy generated due to fission minus the total
energy removed by the coolant. On a unit time basis, the generated energy
is the power p(t), which is proportional to n(t), and the energy removed
is proportional to the difference between the average core temperature

and the average coolant temperature, T(t) and T.(t), respectively. The

energy balance is

t t
Jf p(t)de - Jf H(T(t) - T,(t))dt = MC,.T(t),
o

o

and differentiating with respect to time

MC, é§§£l = p(t) - H(T(t) - To(t)). (2.5)

MC, is the product of the mass and the specific heat of the core, and H
is the total heat transfer coefficient.
From a similar energy balance on the coolant with mc, the mass

heat capacity of the coolant and dm/dt or w the mass flow rate,

dT
mc, _——§l = H(T(t) - Tc(t)) - WCCTc(t). (2.6)

dar . (t)
The reactor and coolant temperatures are proportional if mcg ——ﬁf—_

is negligible. This assumption is valid 1f the coolant is gaseous,
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making mc_ small, or if the flow rate is large, making the temperature

c
derivative insignificant. Assuming that the mass flow rate is constant,
Eqs. (2.5) and (2.6) yield the heat removal equation for a given core,

dr(t) . 1
dt MC

p(t) - +1(8), (2.7)
r T

(MCr(H + wce))
Hwe ‘

where 1 is the heat exchange time constant which equals
c
A further simplified example would result if ; and MC, were large so

that the temperature would be proportional to the power.

Some Reactivity Functions

The usual temperature dependent reactivity is, to a good
approximation, a linear function of temperature. Mohler (11) shows that
the effect due to hydrogen density changes in a rocket is approximately
proportional to the product of the propellant flow rate and the inverse
square root of the temperature,

In general

o = Poo + B(E) + p(T) (2.8)

where pgyo is a component of the reactivity required to maintain
criticality in the steady state, &(t) is an external reactivity input

and p(T) is the general temperature function, Usually,

P(T) = c,T(t), (2.9)
and for a rocket

P(T) = e T(t) + cw(T(t)) 1/2 (2.10)
When temperature and power are proportional,

p(T) = cpp(t). (2.11)
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A Special State Variable Form for the Kinetics Equations

The methods of treatment and the general discussions that follow
presuppose that the nth order dynamic system is representable as n first
order ordinary differential equations. The kinetics equations, however,
are not differential equations but differential-difference equations due
to the retarded argument in the coupling source term. The limitation is,
in reality, general enough to admit systems of first order differential-
difference equations. This can be seen clearly from the definition of
ordinary differential equations. Equations containing the derivatives of
the unknowns with respect to one real variable are ordinary differential
equations, therefore Eqs. (2.3) and (2.7) meet the requirements as written,

A further refinement is necessary because questions of stability
will be considered with respect to some operating point, A linear change
in variables such that the new variables vanish at the operating point
ensures that the derivatives also vanish. This defines the equilibrium
point about which stable or unstable perturbations occur.

Normalized with respect to the operating point, the transformed

variables are

xp(t) = (p(t) - py)/pg
x.(t) = (c(t) - ¢y)/e,
Xe(t) = (T(t) - Ty)/Tqe (2.12)

The variables with the subscript o define the operating point. Substitut-
ing p(t) for n(t) with c(t) now the power due to delayed neutrons, the

kinetics equations are for the ith core

dp, (t) . M
—* = oi t - _i_‘ 2 t
N
Z Q1. PR (E-T 1)
+ P
ioq gy CERPKCETIO (2,13

B4

98




deg 5(t) _ Byj
e P A T A T

dr, (&
1® 1 Py(t) - L1 (t).

dt MCri T4

Setting the derivatives equal to zero, the interrelation of the equilibrium

values is

M N
Piol Pyq = B1)/ 8y + jfl Micijo T Z) Ly ®jkPko = O
=L
Pi j
£; Pio ™ kijcijo (2.14)

Pio = —
MC .y 107 T Tio,

The solution of the first equation above for Pio and the substitution
of the result into Eq. (2.8) evaluated at the operating point yields the
value of p;,, for the particular operating point chosen.

The reactivity function p(T) separates under the transformations
of Eq. (2.12) into a constant, Bo, representing equilibrium, and a
function of only the new variables, 8(x), which vanishes at equilibrium,

From Eqs. (2.14) and (2.8),

N
= - 2
Pio kml,#1i OjkRk = Pioo + Pio .
Therefore N
p - - 5- - Z (e R
100 io k1,41 ik“k (2.15)

where the Ry are the py,/pj, or the "flux tilt" between the cores,

99



If the cores are operating at the same power initially, the R, are unity.
The kinetics equations are transformed using Eqs. (2.12), (2.14),

and (2,15). The desired forms are, with x(t) defined as dx(t)/dt,

ko (E) = ( B(E)/4y + By(x)/8) (L + %55 (€)) = (B/£)jxp4(E)

+ z (Bj/‘g)ixcij(t) = Z aikkapi(t)+ Z aikkapk(t—Tik)
j=1 kal, i k=1,#1
xcij(t) = xijxpi(t) - xijxcij(t) (2.16)

X (8) = (Uedx (6) = (/1% ().

It is seen that the derivatives vanish also for all x = -1, This result
must hold because this point is the zero point for the untransformed
equations,

Only the autonomous system will be considered in this study,
thus Bi(t) will be zero. Also, in the free system, the propellant mass
flow rate is constant, an assumption made previously. The investigation
will consist of determining how the system behaves when one or more of
the variables deviates from equilibrium. This process is identical, in
the linear case, with examining the roots of the transfer function,
which is the ratio of the Laplace Transforms of one of the variables to
that of the generalized input Bi(t). These points will be discussed in
more detail later.,

If the zero point of Eqs. (2.16) represents the origin of an
n-dimensional vector space, then each x represents a component of a

vector which completely describes the state of the system., The variables,
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in this case, are called state variables and the space is called the
state space., The state variables are not necessarily physically
measurable quantities, For example, the delayed neutron precursor
density variable x.(t) cannot be readily measured.

The order of the system is (N)(M + 2), so if there were say
three cores and six groups of delayed neutrons, the order would be
twenty-four. Even with no delayed neutrons and only two cores, the
minimum, the order is four. The problem is formidable, if for no other
reason, because of its sheer size, Experience shows that any problem
greater than third order is difficult.

Eqs. (2.16) do not appear directly in vector matrix form as yet.
Although this is possible, it serves no useful purpose for the general
case, Some specific examples will be stated., Because one group of
delayed neutrons provides a sufficiently accurate model, when delayed
neutrons are considered, it will be one group. Also a two-core system is

sufficient for purposes of illustration.

Power Proportional Reactivity

Using Eq. (2.11) for the reactivity,

p(T) = ¢oPo + cppoxp(t)
. L(t
5 (x) = 2i%pilt)
1 !i

where a is ¢pPos usually a negative quantity. The kinetics equations

are, for one group of delayed neutrons,

N
. 2
xpi(t) = (aj - bi)xpi(t) + aixpi(t) + bixeqi(t) - 2 cikxpi(t)
k=l,#1
N
+ b cikxpk(t - Tik)
kml,#i
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;(ci(t) = NXpg () - Ayxoy(E)
where b is B/l and cyj is Oy kR«
The simplest case imaginable would result if there were no
delayed neutrons and two cores. The équations are

L 2
xl(t) = (al-clz)xl(t) + C12X2(t'T12) + alxl(t)

. 2 (2.17)
xz(t) = (32-c21)x (t) + c21x1(t-T21) + a2x2(t)

with x; and x, the power variables for the two cores. It would be
difficult to justify this example if it were known positively that the
delayed neutron source were of the same magnitude as the coupling source,

With the delayed neutron effect

: 2
xpl(t) = (al-bl-clz)xpl(t) + blxcl(t) + clzxpz(t-T12)+alxpl(t)

Xe1(t) Axp1(t) - AMxc1(t)

(2.18)
Xp2(£) = (ag=by=cp1)Xpp(t) + byxop(t) + ep1x,1(E=Ty )+agxly(t)
Xe2(E) = AgXpo(E) = Apxgp(t)
If the two cores have identical nuclear properties,
by = by
A=A,

Ty =Ty

but in general
c12 # 1
a # 2

because of the flux tilting factor. The initial power, it is recalled,
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is a factor in a, These quantities are equal only if the power levels
are initially equal in the two cores,

These specific examples serve to demonstrate the longhand notation,
The unique mathegatical features of the coupled core system are seen more

clearly.

Properties of the State Variable Form

The choice of variables makes linearization a comparatively easy
task, The variables represent fractional deviacions from equilibrium and
the usual approach is to assume such deviations to be small. The higher
| order terms in the equations are thus neglected. For example, in

Egs. (2.17),

2
xl(t) = xg(t) = 0

A basic question of notation arises here. For Eqs. (2.17) the

vector notation is

x(t) = Dx(t) + Cx(t-T) + £(x),

where the underlined variables are column vectors. For example,

x1(t)
x(t) =
LXZ(t) .
D is the square matrix
(31‘612) 0
0 (az-c21)
C is
0 €12
sy 0
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and £(x) is for this example
2
1 0 xq1(t)
2
0 1 x,(t) |,

These forms are possible only if the delay times between cores are equal.

The general nth order case for Eqs, (2.17) is

x(t) =D x(t) + C x(t-T) I I, + £(x).

D is again a square diagonal matrix

~ 1
d100 ““““““ O
0 d2 O0--cemmmmee 0
| O--mmmmmmmmomoee dp |
where
n
d1="- a - z cik-
kal,#1

C is the square matrix cy) with cy; zero if i=k, in other words, with the

diagonal elements zero. I and I. are unit square and column matrices

respectively. x(t-T) is

Ry (£-T q)-=-==========mmmemom-meenen x1(t-T1)]
R T R (- To) |

The unit operations eliminate the diagonal elements above since they

are nonexistent physically.
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For the higher order problems such as Eq. (2.18) or a problem
with the temperature effect, two or more equations describe each core.
It is possible in this case to arrange the equations in many different
ways. It is essential, however, that advantage is taken of the inherent
symmetry of the system whenever possible,

Aside from notational considerations, the outstanding feature
of the coupled core kinetics equations is the time delay term. The
various properties of equations of this type are discussed in the

following chapter.
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Chapter 3

THE THEORY OF DIFFERENTIAL-DIFFERENCE EQUATIONS

Introduction and Notation

In the last section of the previous chapter, it was discovered
that there could be some difficulty in arriving at a general vector
notation for the equations under consideration, A completely general

form for the equations is

x(t) = F(x(s)) (3.1)
for all t >t,, where t, is the instant at which the solution begins. t,

will be called the initial instant, a fixed finite number.

For the ith element of Eq. (3.1), Fj(x(8)) is a functional whose

value depends upon the values of the function x(s), where X(s) includes
the xj(s) for i=1 to n. The variable s includes all t-T < s < t, where

T is a positive constant. Applying this notation to Eqs. (2.17),
2
Fl = (al-clz)xl(t) + C12x2(t"T12) + alxl(t)
2
Fg = (82-C21)x2(t) + c21xl(t-T21) + azxz(t)

F
F

1
2

|=
1]

The vector space will be Euclidean of n dimensions, given by the symbol
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E®". For any vector x belonging to En, the norm is

=l = max |x]
where 1 = 1,----- ,n. Also, if s lies on the segment a < s < b in E", the
notation
%" = sup (o)
a< s

applies for any function x(s). x(s) belongs to a class of continuous
functions from the segment a < s < b in a region contained in E".

The function F(y(s)) is continuous in time if it is a continuous

function of time for ty, < t < Y when y(s) belongs to the required class of

continuous functions with b = y and a = t,-T. F(y(s)) is locally Lipschitz

with respect to y if there exists a constant L such that

~-T
() - Pz <L |y-z| °7F

and y(s) and z(s) belong to a class of continuous functions on the

segment t -T< s < t.

Existence and Uniqueness of Solutions

In the previous definitions the segment upon which the class of
functions lies extends to t = t -T. The reason is that if the function
is a solution, x(s), it must depend upon data defined for t -T < t < t,.
This is the initial data or initial function ¢(t), In dealing with
ordinary differential equations, it is sufficient to define an initial
value of x at t,, and the solution to the right of t, depends only upon
this initial value. The solution of a differential-difference equation,

however, depends upon initial values defined over a finite time and upon
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the

S
———

initial instant. There could be an infinite number of ¢(t)s which

have the same value at t,, each resulting in a different solution to the

right of t,. Similarly, given a ¢(t), if t, changes on an absolute tim:

scale, the solution to the right of t, changes.

the

The formal proofs of uniqueness and existence are available in

literature (4,5). An example illustrates the problem. The simple

first order linear differential-difference equation

x(t) = -x(t-1) (3.2)

is considered. The initial function, with t, = 0, is

The

and

The

for

the

o(t) =1 (-1t 0).

solution is, for 0 <t <1,
x(t) =1 -¢,

extending this to the interval 1< t < 2,

x(t) = 1 - £ + 1/2(e-1)2.

solution is, by the theory of ordinary differential equations, unique
each N-1 < t < N. The stepwise integration continues and by induction,

general solution is

i k k
x(t) = 1+ 2 (-1) (t-k+1)
k=1 k!

where the ith interval is defined as

and
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the solution is

x(t) = -t + 1/2e%2; 0<t <1

and
1 K+l kt+1
x() = -t + ¢ (=1) (t-k+l)
k=1 (k+1)!

Figure 3.1 displays these two solutions. From the illustrations, it is
seen that choosing the second initial function corresponds exactly to

moving t, to the right by ome interval., The solution to the right of

to changes in either case.

Stability of Differential-Difference Equations

Because the system is autonomous, only asymptotic stability
will be considered. Physically, the system is asymptotically stable if
when perturbed from the equilibrium state, it returns to the equilibrium
state. The stability property for equations with time delay is stated
in the following definition,

Definition 3.1 Asymptotic Stability

The origin of Eq. (3.1l) is stable if for every > O there

exists a 8 > 0 such that when
t,-T,t
loff © 7 ° <®
the inequality
”Z{.(t:to:q’) ” <e

holds for all t >t ., If in addition to these conditioms,

i Jce,egy ) = 0
and t— =

(e, e, o) || <Hy
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for all initial functions

o Tyto
Il oll < Hop»

then the origin or null solution (x = 0) 1s asymptotically

stable.

This means that all solutions starting in a region of En, defined by H,,
remain in a region Hj and approach the origin as time goes to infinity.
Definition 3.1 is therefore not unlike the definition of asymptotic
stability for ordinary differential equations. The difference is that
the initial functions instead of initial points confine themselves to
the region H,..

Definition 3.1 may actually be too general in that a large
class of initial functions is admitted. Consideration of only a rather
restricted class of functions might lead to a broader applicability of
stability conditions in practical problems. However, Krasovskii (8)
shows rigorously that a satisfactory restriction is that ¢(t) satisfies
a Lipschitz condition. This allows a sufficiently large number of ¢(t)
especially in the practical case under consideration where an infinite

discontinuity in the initial function would not be expected.

The Zeros of the Characteristic Equation

If Eq. (3.1) is linear and rewritten as
H(p) =L (x(t) - F(x(s))

where ;ﬁ denotes the Laplace transform., H(p) is the characteristic

equation, With zecro initial conditions on the xj(t), the voots of H(p)

are the poles of the Laplace transform solution of x(t). Positive roots
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indicate exponentially increasing solutions and negative roots indicate
exponentially decreasing solutions. Therefore; a condition for
acymptotic stability is that all the zeros of H(p) are negative in the
real part, In general, H(p) = H(p,eP) since L (x(t-T)=x(p)e PT. These
functions are called exponential polynomials. The stability criteria for
exponential polynomials are stated by Bellman (2).

H(p) is multiplied by a sufficient power of ePT to eliminate all
negative exponential terms. If the product of the highest order of p and

of ePT does not appear, there are an infinite number of roots with

arbitrarily large real parts. This product is called the principal term

whose absence ensures instability. This 1is scen in the following example.

H(p) = eP-p

and
P = 45+ jw.
Solving for H(p) = O,

cosw = oe” Y

e9 = w/sinw.

If o is arbitrarily large, cosw approaches zero, or w = 2nx + 1/2x.
Then from the second equation, since sinw approaches unity,

o = logy(2nn + 1/2x).
Thus g is arbitrarily large and positive as n increases, The stability

criteria are stated in Theorem 3.1.

Theorem 3.1 Siability Criteria for Linear Differential-
Difference Equations from the Characteristic

Equation

H(p) is an exponential polynomial with a principal term,

P = jw and H(jw) is separable into F(w) + jG(w). In order that
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the zeros of H(jw) lie to the left of the imaginary axis
(have negative real parts) condition (a) or (b) must be
‘satisfied:

(a) The zeros of F(w) are real and for each zero, wg,,

dF (wg)
d w
(b) The zeros of G(w) are real and for each zero, wg,

. G(w)< O.

dG(w,)
d w

« F(wg)> 0.
The first order equation
x(t) = -ax(t) - bx(t-T) (3.3)
will be examined via the Second Method of Liapunov, so it is convenient
to use this example and obtain the exact result. The characteristic in
the proper form is
pePT 4+ ePT 4+ b = 0.
The presence of the principal term is noted. Condition (b) of Theorem
3.1 is applied.
F = -8sin® + aTcosO -+ bT
G = 8cos8 + aTsin®
dG/dw = -0sin® + cosBO + aTcosO
where 8 = ¢T. © = 0 is a root of G, so
aT > -bT.
For all other roots, the parametric equations are,
aT = -0BcotH
bT< + (62 + (aT)2)1/2,

An approximate answer results if the lowest order Pade approximant (18)

is used. e PT(2-pT)/ (2 + pT).
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The Routh Test is applied to the resulting characteristic, and the range
of parameters for stability is,
aTs -bT
bT < 2 + aT
which is an overestimate. These results appear in Figure 3.2.

From the solution to Equation (3.2) it could be reasoned that
there probably exists some value of the delay time for which the system
becomes unstable. The series form of the solution approaches that for a
simple negative exponential solution for a sufficiently small value of
the delay. The exact value can be found from Theorem 3.1.

The stability question will be pursued further in terms of

Liapunov's Second Method in the next chapter.
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Chapter 4

LIAPUNOV'S SECOND METHOD FOR SYSTEMS WITH TIME DELAY

Review of the Second Method for Ordinary Systems

The idea of the Second or Direct Method of Liapunov is to
determine stability for a system without a knowledge of the solutions of
the system, The tool for accomplishing this is the Liapunov function
v(x), a scalar function of the vector x(t) for the general autonomous

system .
x(t) = A(x)x(t). (4.1)

v(x) is a positive definite function, that is, it has the properties

(a) v(x) is continuous with continuous first partials in a
region H about the origin of En,

(b) v(0) = 0,

(¢) v(x) is positive in H except at the origin.
Also, v(x)~®» as |k|F®» . This ensures that v(x) = a constant
represents a series of closed surfaces about the origin. The state of
the system lies on successively smaller v(x) toward the origin if the
system is asymptotically stable. Accordingly, the basic stability
theorem is:

Theorem 4,1 Asymptotic Stability

If there exists in some region H about the origin of E"
a Liapunov function v(x), and if 6(5) is negative definite in
H, the origin is asymptotically stable.
The region H could be arbitrarily large in which case the system is

globally assymptotically stable. In many nonlinear problems, however,
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H is finite.

Selecting a suitable v(x) for a given problem is of importance,
and several methods are available for accomplishing this task. A basic
v(x) for Eq. (4.1) is the quadratic form

n
v(x) = i,§=laijxi(t)xj(t). (4.2)
0(5) must be negative definite, a condition reached by proper selection
of the aj js. Sylvester's Theorem gives the conditions for the positive-
definiteness of Eq. (4.2). This will prove useful later.
Theorem 4,2 Sign Definiteness of a Quadratic Form
The function ; aj X1 is positive definite if the

i, j=1
successive principal minors of the symmetric determinant

laij‘ are positive,

A second order example is
) = 2 t) + 2 t)x,(t) + 2 t
V(X) = ag X (8) + 2ap,x ()%, 372%7(8),
which by Theorem 4.2 is positive definite if

a;p >0
- 2 O
211222 310 >

A useful approach for obtaining the aj j for the linear case is

to constrain 6(5) along solutions of the system to be

2 %o
- x "
=1 T

For a nonlinear problem, this approach is used for the linearized

equations, then V(x) is found along solutions of Eq. (4.l). This leads
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to an estimate of the size of the region H in which the system is

asymptotically stable.

Extension of the Second Method to Time Delay Systems

To illustrate the difficulties involved in this problem, an
attempt is made to extend the Second Method directly to the first order
system (3.3). v(x) is chosen to be

v(x) = x2(t) (4.3)

SO
T(x) = 2x(£)x(t) = -Zax>(t) -2bx(t)x(t-T). (4.4)

The method fails. No conclusion can be drawn as to the sign definiteness

of Eq. (4.4). An examination of Figure 3.2, however, reveals that the

system is indeed asymptotically stable for a known range of parameters.
An idea for a new method comes from the functional system

representation .
x(t) = E(x(s)) (4.5)

A natural approach is to seek a functional V(x(s)) of the vector x(s) for
t-T < s < t rather than a function v(x(t)) of the vector x(t). The

functional will be called V(x).

The Liapunov Functional

Several authors examine the stability of Eq. (3.3) by use of the

V(x) = x%(t) + a T/g x2(s) ds.
t_

A more general form is

functional

V(x) = x2(t) + T/t x%(s) ds (4.6)
t-

118




where p is a constant. This particular functional form is due to
Krasovskii. Apparently some experience is required in choosing a proper
functional just as it is in choosing a Liapunov function. The basic
Liapunov approach is unchanged, so if V(x) is positive definite and 6(5)
is negative definite along solutions of Eq. (4.5), the system is stable.

V(x) is positive definite, in fact,

9 2t:-T,t
x(t) <V(x) < (L+quT) [ x| (4.7)

) 2t-T,t
if u >0 , where pT [x(s)]| is the largest value the integral

assumes in s. Differentiating Eq. (4.6),

V(x) = 2x(£)x(t) + px2(t) - px?(c-T),
and from Eq. (3.3),

6(5) = ~(2a - p)xz(t) - 2bx(t)x(t-T) - pxz(t-T). (4.8)

Eq. (4.8) is a quadratic form in x(t) and x(t-T), so from Sylvester's
Theorem, 0(3) is negative definite if

(a) 2a - p >0

(b)  p(2a - p) - b2 5 0,
The maximum value of (b) occurs when y = a, and since y must be > O,
a also is > 0. The range of parameters for asymptotic stability is

therefore

2

a“® - b2

> 0,

or
a>|bl, a >o. (4.9)

This region is shown, along with the exact boundaries, in Figure 4.1,
From the observations above, the basic stability theorem is

modified as follows.
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Theorem 4.3 Asymptotic Stability of a System With Delay
Via a Liapunov Functional

I1f for the region x(s)<H and t > 0, for the system (4.5),
there exists a functional V(x(s) such that
(a) V(0) =0,

(b) V(x(s)) 1s continuous in time and locally Lipschitz
with respect to x(s),

(c) V(x(s)) > w(x(t)), where w is a positive continuous
function in H,

(d) 6(5(3)) S’-wl(z(t)) along solutions of the system,
where wy is a positive continuous function in H,

then the system is asymptotically stable for t> O as defined

in Definition 3.1.

Condition (b) implies continuity of V(x) with respect to x(s), or the
existence of the derivative 6(5). Condition (c) defines V(x) as positive
definite, and Condition (d) defines 6(5) as negative definite. The
functional (4.6) meets all the requirements stated in Theorem 4.3 if the
conditions (4.9) are true. The function w(x(t)) is xz(t). The function
Wl(i(t)) exists, but it is convenienlL to determine negative definiteness
by use of Sylvester's Theorem.

From Eq. (4.7), V(x) also has an upper bound. The condition

t-T
V(x(s)) < W( |x(s) | ’t); W(0) = O (4.10)

could replace Condition (a) in Theorem 4.3. 1Inequality (4.10) is a
stronger condition than (a) and the existence of the function W leads to
the conclusion of uniform asymptotic stability. If a system is uniformly

asymptotically stable; it is stable in the sense of Definition 3.1,
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independent of t,. Driver (4) proves the uniform property of the
stability under these conditions.
The functional of Eq. (4.6) for the general nth order system

would be

n t2
V(x) = v(x) + Z My ij x.(s)ds
i,3=1 J ¢- 3

(4.11)
where the subscripts i and j indicate that the ith equation may contain
all the variables with arguments delayed by several times Tij‘ The

function v(x) 1is the normal Liapunov function for the system with all the

delayed terms zero,

The Liapunov Function for Time Delay Systems

The original attempt to solve the stability problem using a
Liapunov function failed because G(x) was not negative definite in
Eqs. (4.3) and (4.4). The solution to Eq. (3.3) is, by stepwise
integration and induction,

xo(£) = (-b/a)"

+(1 + b/a) ; ; (-1)k'it-(k-llT)J'l£b)j-lﬁ/ﬂkfje-a(t-(k-l)fy)
=g (3-1)!

for the segment (n-1)T < t < nT, and for ¢(t) = 1. The solution appears
in Figure 4.2 for a= b =T = 1., The solution exhibits an oscillatory
behavior which appears only for the second order system of ordinary
differential equations. With time delay, v(x) for the first order system
is xz(t) which also oscillates, so G(E) is positive for certain times.
The functional and function and their derivatives are plotted in Figure
4.3 for this example. This figure also demonstrates that the functional

is the natural approach to the problem,
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Despite the apparent inconsistencies, the system is known to be
asymptotically stable not only due to previous considerations, but also
due to iIntuitive feelings resulting from an examination of Figure 4.2.
The system appears to be returning to equilibrium., The following Lemma
sets forth an additional consideration.

Lemma 4,1  Asymptotic Properties of v(x)

to-T, Lo

For all initial functions "¢(t)" < H,, let

Y
[x(s)]] < H for all t; < t < w. A function v(x(t)) is

bounded uniformly for all || x(t)|| < H, t > t,. Suppose that

v(ﬁ(t)) has the property that for some y >y, there exists aly),
8(y) >0 such that along solutions of the system, Sup 0(5)< -a(y)

for t > t  + 8(y) for all solutions satisfying v(x)(0)) <.

Then

lim

£ SUP v(x(%,t5)) < Yo

independent of ¢(t).
This means that there is some t >ty + 8(y) beyond which v(x) decreases
monotonically. The idea is incorporated into a theorem.

Theorem 4.4  Asymptotic Stability of a System With Delay Via
a Liapunov Function

1f for the region [[x(t)|| < H and t > -T for the system
(4.5) there exists a function v(x(t)) such that
(a) v(x) < W(x) where W is continuous in H and W(0) = O,

(b) v(x) is continuous in time and locally Lipschitz with
respect to x,

(c) v(x) > w(x) where w is continuous and positive (v is
positive definite),
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(d) there exists a continuous function £(r)> r for
all r >0 and a positive continuous function
w1(x)> 0 such that

v(x) % -wi(x) (negative definite)
for t > 0, and
v(x(s)) <E(v(x(t))) for all t-T <s <t

then the system is uniformly asymptotically stable for t >0.

If Condition (a) is relaxed to v(0) = O, the conclusion is asymptotic
stability. Condition (d) requires that the function v(X) is decreasing
monotonically to the right of ty + 0, in accordance with Lemma 4.1.

As an example, for Eq. (3.3), v(x) is again xz(t) and

V(x) = -2ax?(t) - 2bx(t)x(t-T).

f(v) will be v/q where 0< q< 1, Then by Theorem 4.4,

x2(t-T)< x2(t)/q (4.12)
Clearly
vx) < -2(ax®(t) - [bx(t)x(e-T) [) (4.13)
and from Eq. (4.12)
[x(t) [> a2 [xe-m) |, (4.14)
If in inequality Eq. (4.13) =x(t-T) 1is replaced by x(t) /ql/z, the
resulting inequality
[b k(o) | x¢e-m I< b e | xe) g™
leads to the conclusion
v(®) <-2(a - [b|/at2)x (). (4.15)
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The right hand side of inequality (4.15) is negative definite if

a>ao0
a > [b]/qM?
or
a Ibl; a> 0
since q1/2 can be arbitrarily close to unity. This is the same result as

that obtained by use of the functional.

A Different Functional Form for the System Equations

If a system of ordinary differential equations is written in a

different form, a different stability result is found if the same
Liapunov function is used. For example, if the system is

il(t) = -axl(t) - bXZ(t)

X9(t) = -cxp(t) - dxy(i)
the equations may be rewritten in the phase variable form

x(t) + (a + c)x(t) + (ac - bd)x(t) = 0

or .
xl(t) a x2(t)

Xp(t) = -(a + c)xy(t) - (ac - bd)xy(t).

2 2
1f V(E) = xl(t) + XZ(t),

6(5)4.16 = -ax%(t) - (ab + cd)x(t)xy(t) - cx%(t)
. 2
V(E)4.17 = -(ac - bd - 1)x3(t)xy(t) - (d + c)x,p(t).

0(5)4.16 indicates stability for
as~o0

ac - (ab + cd)/4 >0,

(4.16)

(4.17)
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§(§)4.17 is indefinite, so no conclusion on stability results. The
resulting ranges of parameters can be superimposed in this method to
perhaps yield an answer which is better than either individual result.
This idea can be extended even to the first order case for
differential-difference equations. The equations are rewritten using an

integral representation
t.
x(t-T) = x(t) - T/P x(s)ds. (4.18)
t..

Eq. (3.3), as an example, takes the form

t t
x(t) = -(a + b)x(t) -ab 1f x(s)ds -b? r/ﬂ x(s-T)ds
‘- t- (4.19)

if Eq. (4.18) replaces x(t-T). If v(x) = x2(t),

. t t
v(x) = -2(a + b)x%(t) -2ab l/ﬁx(s)x(t)ds - 2p? T/Fx(s-T)x(t)ds
t- t-

(4.20)

t ~
< -2((a + b)xz(t) —lab] $/‘ lx(s)” x(t)l ds -b2 T/m]x(s-T)” x(t)'ds)
t- t-

Under the conditions of Theorem 4.4, the integrals in Eq. (4.20) must be

less than the maximum value of the integral over t-T < s < t, which is

sz(t)/ql/z.

The constant q is different for each integral, and for expediency, each
will be assumed to be unity., It is recalled that q may be arbitrarily
close to unity.

Inequality (4.20) is, therefore,

V(x) < -2((a + b) - |ab|T - b2T)x2(t), (4.21)
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which consists of two cases,

(a)  v(x) < -2(a(l - bT) + b(l - bT))x*(t); a 0, b O
. (4.22)
(b)  w(x) < -2(a(l + bT) + b(l + bT))x2(t); a 0, b O.

The right sides of the inequalities (4.22) are negative definite if

(a) aT >0, 0 <bT <1
(4.23)
(b) -bT(1l - bT)/(l + bT)< aT <0, b >0,
The Regions (4.23) appear in Figure 4.4. This result is combined with
the previous result a3>’b’, and compared with the exact result. The
answer 1is considerably improved and reasonably close to the exact answer,

The maximum value of -aT in Eq. (4.23,b) occurs at b =2 - 1 and

-aT= 22 - 3.

Conclusions

The simple first order linear example used here illustrates the
mechanics of the method. The decision to be made is whether to use the
functional or function approach. While the Liapunov functional is the
natural tool, the function seems to lead to better results with a
minimum of effort in the problem examined.

New results could be achieved through the choice of a new
functional form. It is difficult to guess just what form would be useful,
Krasovskii has introduced a functional involving a double integration
which, for Eq. (3.3) yields a region

aT >0, O0<bT<l.
Due to the extra manipulations, this approach is not interesting except in

cases in which all the variables except the derivative have the retarded
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argument, In this case the functional used here fails to solve the
problem.

Razumikhin (13) has arrived at the regions in Figure 4.4 by a
slightly different approach. Only the results are given in his paper,
and his figures are grossly exaggerated and overoptimistic. 1In the same
paper, Razumikhin gives the results of a third order linear problem.
These results are somewhat sketchy, but this is the most difficult

problem worked in the literature.
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Chapter 5

FURTHER STUDY

The next step is to apply these methods to the coupled core
reactor system equations. Some linear problems will be worked using the
Second Method, and the results compared to the exact solutions. This
will demonstrate the usefulness of the Second Method in solving linear
time delay problems.

A method will be developed to deal with the nonlinear system.
It is felt that a suitable approach would be to find Liapunov functions
for the linearized system, then to estimate the region of stability by
calculating v along solutions of the nonlinear system. Stability results
will be given in terms of the parameters of interest (delay times,
coupling coefficients, and flux tilt) and in terms of the regions of

stability in the state space.
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SECTION III

SYNTHESIS OF OPTIMAL CLOSED-LOOP CONTROL FOR NUCLEAR ROCKET SYSTEMS

Chapter 1

SYNTHESIS OF OPTIMAL CLOSED LOOP CONTROL FOR NUCLEAR
REACTOR SYSTEMS

Theory

A number of papers in recent years have discussed the
determination of an optimal control for nuclear reactor systemsl’2’3’4.
The optimal input control vector and the optimal output state vector are
computed using Pontryagins's Maximum Principal5 for the given performance
criteria. The resulting control system typically operates open loop and
thus will be quite susceptible to any internal noise or errors due to the
non-exact mathematical description of the system. In order to reduce the
effect of these disturbances on the optimum system state-transition
trajectories, it is desirable to determine a closed loop controller.

The familiar neutron kinetics equations of a reactor system,

which in general are nonlinear, are described in state variable notation

by first order differential equations of the form

x = f(x, u) (1.1)
where x is the state vector and u the control vector. When random
disturbances are added to the system the problem of determining the
optimum control then becomes one of a statistical nature,.

For linear dynamic systems, the well known Wiener filter was

developed by Wiener to handle such a statistical problem. Because the
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Wiener problem is solved in the frequency domain, a number of limitations
curtail its usefulness.
(1) The optimal filter is specified by its impulse response, and
the task of synthesizing the filter from such data is not

easy.

(2) Numerical determination of the optimal impulse response is
often quite involved making machine computation difficult.

(3) Important generalizations require new derivations which may
be difficult to the nonspecialist,

R. E. Kalman and R. S. Bucy7)8

in recent years have taken the
Wiener filter problem in its entirety out of the frequency domain,
restating it in the time domain. This new approach to linear filtering
has virtually eliminated the major limitations associated with the Wiener
approach, making synthesis by machine computation both feasible and
relatively simple. This fact is demonstrated by a number of problems to
which this approach has been applied since the appearance of references

(7) and (8)921011,12,

The theory has been labled the "Linear Optimal
Stochastic Control Theory."

As stated previously, the nuclear reactor systems considered in
this study are described by sets of nonlinear first order differential
equations. In order to apply linear opiimal stochastic control theory,
the equations must be made compatible with the theory. This is
accomplished by making piecewise linear approximations about the
predetermined optimal trajectories. The resulting piecewise linear
differential equations describing perturbations about the optimum path
are time varying and take the form

. _ |21 — of —
o 5% 5x + 3a l— du (1.2)

%,
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where 5x is a small perturbation about the optimal output vector ;o

ie X =X - X,

and 3u is a small perturbation about the optimal input control vector ;o

ie Su = u - ;o
For convenience Eq. (1l.2) is redefined as

. — _—
e F(t) 8x + G(t)du (1.3)

where F(t) is the system matrix and G(t) is the input matrix.
In order to determine the optimal feedback control, one must
first choose some index of performance to extremize. For this work

quadratic indices of performances of the type

1 _r — _ —
5J = 2 ox (tf)s(tf)ax(tf) + Elfrf (g(TQl(t)BX + 6—1.1TQ2(C)6U.)dt
o
(l.4)
were assumed where S(tf) is the terminal condition matrix whose elements

are chosen to obtain the desired terminal accuracy; Ql(t) is the state

variable error weighting matrix; Q,(t) is the control weighting matrix,
and tg is the terminal time.
Pontryagin'’s Maximum Principle is now applied to deiermine the

optimal control feedback., The pre-Hamiltonian for the system becomes
1 — — ., 1 — X - -
R = 2 BR1Qu(E)ox + 3 5u'Qu(0)Bu + PF(X - (X))
e 1580 (Er e LT T T —
7 0% Q(O)BX + 3 Bu Qp(e)pu + [F(£)ox + G(t)su]

where y(t) is the costate vector which is adjoint to the state variable
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vector. Hamilton's equations for the system are

= é;; F(t)dx + G(t)du (1.6)
’ .y T
2 = ?i = -Ql(t)ax - F(t) \P (1.7)

The optimal feedback control Bu, is that control which minimizes

R (this is the system Hamiltonian)

= 0= 2R v T e) o
H=0 = Qa(t) Bup + G (t) P (1.8)
solving for EEO
Buo = @ M) ()P (1.9)

It is now assumed that the costate vector QJ is of the form

g} = P(t)dx (1.10)
Substituting Eq. (l.10) into Eq. (1.9) it is clear that the

optimum control is

§a, = -0y (©)ET()P(E)ER (L.11)

where -QZ-IGTP is the feedback gain, Differentiating Eq. (1.10) with
respect to time and employing Eqs. (1l.6), (1.7), and (1l.11), one can

determine the form of P(t).
5-;:,, P(£)5% + P(c)a—:c" = -Q(t)BX - FI ()|
§(t)§£ + P(O)[F(£)8% + 6(£)80] = -Q1(£)8% - FT(t)P(t)BxX
P(E)BE + P(E)F(E)BX + P(£)6(E) [ -0~ 1(t)GT (£)P(e)]3X = -qp(£)5x-FT(£)P(t)ox

(1.12)
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Since E; is common to all terms and is not equal to zero

P(t) = -P(E)F(t) - FL(E)P(E) - Qp(t) + P(E)G(E)Qy"L(t)G CLCI

Here P(t) is a symmetric, nonlinear, generally time-varying
matrix satisfying a differential equation of the matrix Ricatti type. If

the terminal time is not permitted to vary, ie &tg = O, then the
boundary condition on P(t) is found to be P(tg) = S(tg).

Thus in order to solve for P(t) it is necessary to integrate
Eq. (l.13) backwards in time.

Figure 1 is a block diagram of the solution of the optimal
control process.

If, in addition to system internal noise, there is also noise in
the measurement of the system state variables, which is generally the
case, statistical estimates of these state variables must be made to
predict the optimal control, The optimal closed loop control is then
defined as that control which minimizes both internal and measurement
noise. Since the optimal closed loop control, as shown, is based on
known values of the system's state variables, it is important that the
best estimate possible be determined.

It is known that for linear systems with quadratic performance
criteria, it is possible to solve the estimation problem and the previously
developed optimization problem separately and still obtain the overall
optimum system13_ When estimates of the state varlables are used in
nonlinear systems, however, it cannot be assumed that the overall system

will still be optimal. Clearly, if estimates of the state variables were
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available the only recourse would be to use them. The problem of joint
estimation and optimization for a nonlinear system is an extremely
difficult unsolved class of statistical optimization problems,
The differential equations governing the dynamics of the nuclear
reactor system now become
« - _ _ -
%= f(x, u) + w(t)

(1.14)
¥ = M(t)X + V(t)

where
§(t) = state vector
u(t) = control vector
y(t) = measurable vector
w(t) = Markov-Gauss random vector

v(t) = Markov-Gauss random vector

The vectors w(t) and V(t) in Eq. (l.l4) are independent random processes

(white noise) with identically zero means and covariance matrices

]

cov [w(t), w(t)] = A(t) . 8(t - 1)
cov [V(t), V(1)]

cov [w(t), v(1)]

R(t) . &(t -
(.) 8¢ T)for all &, ¢
0 (1.15)

where 8(.) 1is the Dirac delta function; A(t) is a positive semidefinite
symmetric matrix; R(t) is a positive definite symmetric matrix.
The covariance matrix of two vector valued random variables

;(t), E(T) 1s denoted by

cov [E(t), B(r)) = €a(e)bT(x)-Ea(t) EbT(q) (1.16)

where Ei(.) denotes expected value,
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In order to use linear optimal stochastic control theory, it
is necessary to expand Eq. (l.14) about the optimal trajectory

;=[2£ . [2F
Bx 2% |13 & * |3u 6o du + W

¥o (1.17)

or

F(t)3x + G(t)du + w

8 = M(t)dx + Vv

Here it is assumed that perturbations of the state variables
about their optimal paths are due entirely to noise in the control vector.
In a nuclear reactor system this is reasonable because all noise will
show up as reactivity perturbation which in most cases is the control
variable,

The optimal estimate of the state vector at time t based on
known information for time prior to t is éi(t't) and is generated by a

linear dynamical system of the form

) -~ =
ex(t/t) = F(£)dx(t/t) + K(t)dy(t/t)
= A Pa (1.18)
dy(t/t) = By - M(t)sR(tft)
The initial state g;(tdto) is zero.
The optimal filter required for state variable estimation is a
feedback system, It is obtained by taking a linear model of the plant
Eal
dynamics, omitting the input control, forming the error signal 5y(tj|t)
and feeding the error forward with a gain K(t). Thus the specification

of the optimal estimation filter is the computation of the optimal time

varying gain K(t).
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The optimal error is denoted

— o

7~
gx(tit) = 8&x - &x(tlt) (1.19)
=
This optimal error §§(tlt) is governed by the same dynamics as

sx(tlit)

/.\ A\ ~
x(tlt) = F(r)dx(tit) + G(e)8u-K(e)[FM(t)gx(18)]  (1.20y
where §3(toko) is zero.

Kalman has derived the form of the optimal gain. This derivation

is abstract and lengthy, and the reader is referred to sections 8,9, and

10 of reference (8) for details, The optimal gain 1is

K(t) = v(e)ME ()R L(t) (1.21)

A~

The matrix V(t) is the covariance matrix of §3(tlt)

V(t) = cov(éé(t\t), gg(clc)) (1.22)

Kalman has also shown that V(t) must be the solution of the

Ricatti-type matrix differential equation

V(t) = F(t)V(t) + V(t)FT(t) - V()M (t)R'1(t)M(t)V(t)+G(t)A(t)GT(t)
(1.23)

The initial condition that must be satisfied for Eq. (1l.22) is

V(to) = cov(dx(ty),Bx(ty)) (1.24)

Figure 2 1s a general block diagram of the solution of the
optimal estimation and control problem.

Since Kalman's formulation and solution of this problem of
estimating the state variables, a great deal of interest has been shown
14,15,16,17

by a number of other researchers: Their work basically present
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somewhat simpler techiques for obtaining optimum estimates of the state
variables for discrete time systems, Both the linear and the nonlinear
estimation problems have been investigated with the unanimous result
that, given all values of the measurable vector 8y up to g;(t), one can
statistically determine the optimal estimate gi(tlt).

For the nonlinear problems undertaken in this study a modifica-
tion of Kalman's linear approach was formulated for the optimal estimate.
This modification partially relaxes the requirement that the optimal
estimation of the system state variables be determined solely from a
linearized model of system dynamics about the optimal trajectories, Upon
examination of Eq. (l.17) it is seen that the dynamics of the optimal
error is a linear function, of both the optimal error gi(t\t) and the

optimal feedback control Su(t) whereby it is formulated that the optimal

estimate can be given by the equation

X(tit) = E(;f(tlt)ia(t)) + K(E)y(EIt)
Sty = F(t) - M(tYE(E1E) (1.25)
where it is assumed that

R(toko) = X(to) = Xo(to) (1.26)

It is observed, however, that there is a descrepancy between
Kalman's optimal estimate given by Eq. (1l.18) and that formulated in
Eq. (l.25). Eq. (l.25) is an explicit function of the control vector
whereas Eq. (1,18) is independent of the control, The justification for
using Eq. (1l.25) rather than Eq. (1.18) can be shown by a simple

illustration,
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If it is assumed that there is no noise, either internally or in
the measurement, it is obvious that the optimal estimate will be identical
with the physical state defined by Eq. (l.l1) in the nonlinear case and

by Eq. (l.3) in the linear case.

o~ L —— —
nonlinear, x(tlt) = x(t) for w= 0 and v = 0
ie 2~ —
or linear §5(tlt) = §x(t)

Clearly for this condition
a) Sy(tlt) = 0 and b) J(tit) = O (1.27)
Substituting conditioas (l.27a) and (l.27b) into Eq. (1.19) and

Eq. (1.25) respectively

5§(t) = F(t)dx(t) = 0 (1.3a)
X(t) = E(R(L), W(t)) # 0 (1.1a)

Eq. (l.3a) is no longer a linear function of the control &u and
thus 8x can only be zero for this case. This is an obvious result since
no perturbations exist. Eq. (l.la), on the other hand, not only is a
function of the control, but it is identical with Eq. (l.1).

This formulation lacks rigorous proof., It is used in this study
solely on the basis of the above illustration, Figure 3 is a general
block diagram of the solution of the optimal control and estimation
problem just discussed,

The optimal feedforward gain K(t) is still determined by Egs.
(1.21), (1.,22), and (1l.24). Therefore, the dynamics are linearized only
for the purpose of solving the matrix - Ricatti-type differential Eq.
(1l.23). This scheme for determining the optimal estimate works nicely

for the class of nonlinear problems used to describe nuclear reactors.
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In general the nonlinearities are never more than the product of two
system variables. There is no guarantee, however, that estimates of the
state variables for dynamic systems with other types of nonlinearities
can be successfully made using this technique. Higher order errors,
products of erros, and/or division by errors may tend to obscure the
estimates based on Eq. (1.25).

A result of the linear estimation which makes it an optimal
approach, 1s that as time increases the statistics necessary to determine
K(t) get progressively better, Since Eq. (l.18) is a superposition of
only linear terms, the optimal estimate theoretically is identical with
the actual physical state at infinite time. The same cannot be said about
the superposition of a linear component with nonlinear components as in
Eq. (1l.25). 1In fact, in some other classes of nonlinear problems it may
be that the statistics become worse. This, of course, would not only
make successive estimates worse, but would increase the perturbations

about the optimal state.
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Chapter 2

OPTIMUM SYNTHESIS APPLIED TO NUCLEAR REACTOR POWER TRANSFER

This particular synthesis technique was applied to a problem of
power state change in a TRIGA type nuclear reactor system., The optimum
state transition trajectories were determined in reference 2.

The problem of interest considers a bare thermal reactor with
temperature feedback. For convenience only one group of delayed neutrons
were used. It is also assumed that the core temperature is proportional
to the power level. The total effective system reactivity is then the
sum of the external control rod reactivity input e and the temperature

feedback reactivity.

Pt =@ - (2.1)
where O is the power (temperature) coefficient of reactivity and n is the
reactor power level., The reactor kinetics are described by the following

equations.
n= (QPt-p)n/L + Ac = (P-0n-B)/L + Ac

¢ = Bn/4 - Ac (2.2)
where the neutron density (power level) n and the precursor concentration
¢ are the state variables and the reactivity is the control variable.

The system is assumed to be in the steady-state for time t €0 and has the

initial conditions.

n(0) = n5 , ¢(0) = ¢, (2.3)
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The problem is to increase the power from the initial state n, to a
terminal state angy, where a is some constant greater than 1.0,with

minimum control energy. The performance index for the system is

tg
J = f e 2 dt (2.4)

(o}

It is assumed that the control system has inertia and cannot respond

instantaneously. This is given by the constraint

o < L4
el S0 o (2.5)

The control variable thus becomes é in lieu of e and e now becomes a

state variable., The kinetics equations become

n = (() ~-cn-B)n/f + Ac
¢ = Bn/f ~ Ac
0=u (2.6)

where u is the control variable. Figures 4 and 5 show the optimal
reactivity and optimal power level trajectories, respectively, for
increasing the reactor power from 10 kw to 50 kw with minimum energy.
Figure 6 shows the control variable optimal trajectory.

The problem stated above was reformulated for digital computer
computation. The optimal power trajectory was approximated by an eighth
degree polynomial with time as the variable. The following parameters

were used for computation,

A = 0.1 sec™! ng = 10 kv
o= 1075 kw1l a=5
£ = 103 sec B = 0.0064

tf = 0.47 sec
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The boundary condition at terminal time is that n(tg) = 0. It
is easily shown that the terminal reactivity required to maintain this
condition is

P (L) = £e(t)/n(tg) + on(tg), t 2> tg (2.7)

For closed loop synthesis, this terminal reactivity can be
maintained by a dither type control as suggested in reference 2 with
appropriate reactivity constraints. This then requires that the optimal

closed loop process only be used up to the terminal time tg yhen

ﬁ(tf) = 0 and n(tg) = ang,
Having formulated a model for the nuclear reactor system and

determined the optimal trajectories it is necessary to determine the

linearized system coefficient matrix about the optimal trajectories.

The deviation of the state and control variables about the optimal

trajectories are

®n = mna¢ " Dop

= c -c
Be ac °P State Variables
50 = Qac ~ fop (2.8)
and
u = Uze - Ugp (2.9)
The output state vector is
5x = 5c
8¢ (2.10)
The linearized model becomes
o [E® A g
5x - 0
B4 -A 0 dx + | 0| Bu
0 0 0 1 (2.11)
=  F(t)dx + G(t)du (2.12)
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where
£11(8) = (Pop = Omg, - BJ

£13(£) = npp/é (2.13)

The steps involved in the realization of the control system are:
(a) Choice of the acceptable optimal trajectories.,
(b) Evaluation of F(t) and G(t) along the optimal trajectories.

(c) Solution of P(t) and V(t) via the matrix Ricatti-type
Eqs. (L.13 and (1.22).

(d) Storage of the optimal state variables, optimal control
variables and the feedback gains Q,~1GTP and VMIR-L,

The selection of the error weighting and control weighting matricies, Qj
and Q, is arbitrary. 1In practice the best selection is determined by
varying the ratlo of Q1/Q2. Theoretically the optimum feedback control
system is arrived when this ratio becomes infinite. In actuality, however,
this situation is physically unrealizable since the control system would
become so "sluggish" that it could not possibly follow the system., If the
ratio is too small the feedback control would not have much effect on the
random process. The obvious choice, then is the smallest ratio which
yields acceptable accuracy. The control weighting matrix Q2 for this
problem is a 1x1 matrix equal to unity. From Eq. (1l.1l) the optimal

feedback control becomes
S~ o~ AN
du, = -(P3dn + Pgybc + P33ae) (2.14)

where Pij are typical elements of the P(t) matrix solution of Eq. (1.13).

The error weighting matrix is a 3 x 3 diagonal matrix of the form

oW o
Qoo

A
Q; = 0
0 (2.15)
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where the elements A, B, and C are chosen to obtain the required
accuracy. For convenience A, B, and C are constant and chosen to be
integral powers of 10, The matrix can easily be represented in the

following way,

102 0 0
U = Qi(a, b, ¢) = o 10° o
0o o0 10¢ (2.16)

where a, b, c are the exponents.,
Figure 7 illustrates feedback gain programs of P31, P3s, and

P for continuous error detection in this example, for Qp (o)- b)),

33
This solution was obtained by integrating Eq. (1l.13) backwards in time
on The University of Arizona's IBM 7072 digital computer. The techniques
required to obtain this solution are discussed fully in the section omn
numerical methods,

As mentioned, random disturbances are incorporated into the

nuclear reactor systems as control perturbations., For digital computer

synthesis this is very easy to accomplish. The actual control becomes

Uye = uop + w - Buop (2.17)
where w is the random disturbance. This disturbance is assumed to be
Gaussian with zero-mean. On the digital computer a random number
generator is used to generate w., A discussion of the computer scheme
is given later.

The covariance matrix A(t) can be determined from w. Here w

is a 1 x 1 vector with element wyj. The covariance matrix is then simply

@ w 2 -W112/20'W112
A(t) = apy = mce dwpy = qupp?

-Q
Vax
o¥1l (2.18)

156




LST

140

120

100

P, x 10%(kw x sec)™; P,x 10°(kw x sec)™
> o @
C o o

n
(=]

0.0

00 04 : . : 20 .24 .28 32

TIME (sec)

FEEDBACK GAIN PROGRAMS FOR CONTINUOUS TIME ERROR DETECTION OF SYSTEM

STATE VARIABLES FOR ERROR WEIGHTING MATRIX Q,(0, -, 4)
FIGURE 7



where 0W112 is the variance associated with the Gaussianly-distributed
disturbance wi1e Inasmuch as synthesis of this problem was performed on
a digital computer the statistics of w;) and other random variables were
predetermined, By digital computer synthesis it is possible to determine
how small the perturbations must be in order ﬁhat this linearized
feedback formulation be valid, by varying the statistics of the random
variables,

In a reactor system it is only possible to measure the state
variables of power and reactivity. No measurement can be performed on

the precursor concentration. The measurement matrix must then take the

form
mll 0 0
M(t) = 0o 0 0
0 0 my (2.19)
For this example it can be assumed that the measurement is a
linear function of the observed variables, ie mj; = m33 = 1,

Frequently the power level of a large reactor is measured logarithmically
changing the form of mj;. Noise in the measurement is represented by the
Markov-Gauss vector

vn

V = Vc
VP’ (2.20)

The covarlance matrix R(t) is determined for the case where all Vi have

zero mean with no cross correlation

cmz 0 0
R(t) = 0 UCZ 0
0 O 092 (2.21)

The following values have been determined for the variances of

the random variables. Here it is assumed that the random variables be
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constrained to five per cent of the maximum value of their respective

state or control variable 99,9 per cent of the time.

owé =  0,0000152
onl =  0.583
gc? =  114.3

092 =  0,000168

Knowing the forms of M(t), A(t), and R(t) solution of Eq. (1.22)
is possible. The elements of the covariance matrix V(t) are stored as
the optimal filter gains. The same numerical techniques required to
evaluate the P(t) matrix hold in this case with the exception that the
vy are integrated forward in time.

In practice time varying feedback gains are not desirable. It
has been suggested that the matrix Ricatti differential equations be
solved in the steady-state for linear systems to obtain constant gains.
This technique, however, zan not be applied to nonlinear systems due to
the fact that both F(t) and G(t) are time varying functions of the
optimal trajectories. A simple average of the time varying gains over
the control period would accompiish the same purpose. However, such a
control system would be sub-optimal since this would place too much
conitrol in the initial phase and too little control in the final phase.

Several control schemes were synthesized for this problem to
determine the relative merits of each. Each scheme was carried out
digitally using identical disturbances in both control and measurement.
In all cases solution of the P(t) matrix was required. 1In addition the
open loop solution was obtained for comparison purposes, Figure 8

illustrates the different power level trajectories for the four schemes
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with the inclusion of both the open loop and the optimal trajectories.
These curves were obtained for an error weighting matrix of Qj(0, -%,4).
For purposes of identification these schemes were labeled:

(1) Kalman linear estimator

(2) Nonlinear estimator

(3) Time varying gain with no estimator

(4) Constant gain with no estimator

The '"Kalman linear estimator'" is depicted in Figure 2, The
solution of the '"monlinear estimator' is shown in Figure 3. These two
systems require the solution of the matrix Ricatti-type Eq. (1.22), In
practice this is done in real time during the control process using all
known information. This, then, clearly requires in addition, not only
stored programs of the optimal trajectories and gains, but a computing
device to perform the integration. In most nuclear control applications
such a system is not feasible. For controlled startup of a space nuclear
reactor, however, where control times are small and optimization of some
performance index, such a propellant consumption, is critical such control
schemes appear desirable. Solution of the P(t) matrix must be
precalculated as mentioned,

The "time varying gain with no estimator" scheme eliminates the
requirement that a computing device be part of the control system, The
solution of this scheme is shown in Figure l. No attempt has been made
to get statistically better estimates of the measured state variables,
Since it is impossible to measure precursor concentration, and no

attempt is made to estimate this variable, the form of the optimal control
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changes from that given in Eq. (2.14) to
dusp = -(P3dm + Py35p) (2.22)

A sufficient error weighting matrizx for this control scheme would

be

Q = Ql(a, - «,b) (2.23)
neglecting the weight on the unobservable state variable, precursor
concentration,

The "constant gain with no estimator" is identical wifth the
previous scheme except that the gain elements are averaged over the
control period. This 1is the simplest control that still contains an
element of the optimization technique. For most practical applications
this would appear to be the most desirable., Solution of the matrix
Ricatti-type Eq. (1l.13) can easily be obtained for any desired trajectory.
Here it should be pointed out that optimal closed loop control theory can
be applied to any known nominal trajectory and not necessarily an
optimal oney; since only the error of the control and state variables are

optimized,

-t
fo)]
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Chapter 3
FORMULATION OF THE OPTIMAL CLOSED LCOP CONTROL PROBLEM
FOR START UP OF A NUCLEAR ROCKET ENGINE

The dynamics of a nuclear rocket emngine have been formulated in

18,19,20,

several references Two, somewhat conflicting, sets of nonlinear

18

differential equations have been formulated by Smith and Stenning™®, and

Mohler and Perrylg. Both formulations consider a nuclear rocket engine
with bleed turbo-pump or topping turbo-pump drive. The basic difference
in these two concepts arises in the form of the temperature reactivity,
8Ky Smith and Stenning contend that this reactivity is directly
proportional to the square root of the core exit stagnation temperature,
ie 6KT=OT'V—H. Mohler and Perry contendé that this reactivity is directly
proportional to this temperature, ie 5KT= O%T. Since there are other
sources of reactivity in such a system both contentions could give fairly
accurate results simply by choosing appropriate reactivity coefficients.
The model comnsidered for this problem is that put forth by
Mohler and Perrylg. It consists of the basic neutron kinetics equations,
coupled with a heat exchange equation via core temperature and propellant

flow rate in the form of reactivity. The following nonlinear differential

equations describe the system of interest.

6

. Q -
Neutronics Q = —IIE Q + Z AiCy
i=1
Cy = PjQ/f - \iCy (3.1)
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Heat Exchanger T = Q. I 3.2)

where the system state variables are Q, C;, and T.
Q = power level
Cy = precursor density for ith delayed neutron group

T = core exit stagnation temperature
PT = total reactivity

M. = mean effective heat capacity of reactor core

T, = heat exchanger time constant,

The total reactivity is comprised of control rod reactivity uj,

propellant density reactivity 8Kp and temperature reactivity &Ky,

Pp = up + BKp + 8K, (3.3)
where
oKy = CyT (3.4)
and
8K, = Couy/ VT (3.5)

Here uy, is the control rod reactivity, a control variable and
uy is the ccolant mass flow rate, also a control variable. Usually

4

CT €0 and CP> 0. The heat exchanger thermal time constant is

Ty, = (au251 sec (3.6)

where a 1s a constant of proportionality at rated design flow rate.,
The following hypothetical nuclear rocket rated design
conditions were used as system parameters.

Maximum Reactor Power, Qp.. 2260 megawatts
Design Propellant Flow Rate 130 1b/sec
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Maximum core exit stagnation temperature, Tpax 4500 °R

Heat exchanger thermal time constant, tp 1.5 sec
Propellant inlet temperature, Tpyy, 120 °r
Mean effective neutron lifetime, £ 3 x 1072 sec
Propellant reactivity,dKp 0.0065
Temperature reactivity, SRT -0.0065
Effective delayed neutron fraction,oﬁ 0.0065
Effective one group decay constant, A _ 0.1 sec~!
Effective core mass heat capacity, Mc 1140 Btu/°g

The optimal control problem was stated by Mohler as follows: 21
"Given an initial reactor steady-state, bring the system
to the desired terminal steady-state so as to minimize the
consumption of propellant,..."
The index of performance thus becomes the minimization of the control

variable ujy, Due to turbo-pump design constraints, such as stalling and

pump cavitation, up is constrained to both an upper and lower limit,
< uy, (3.7)
In addition to flow rate constraints there are constraints on

core maximum power, maximum temperature, maximum and minimum control rod

reactivity insertion, and rate of core temperature rise.

Q £ Qpax
T < Tpax
-y8 L u LvB
foan = G

where y is a positive number greater than 1,
For convenience, cne group of delayed neutrons were used in this

formulation. The pre-Hamiltonian for the system becomes:

R = Qkf)1+Ctp2+Tq)3+u2q;4

I(ul,Q,T,C)+-9£%I(y1 + uz((Va-Ta‘VS) (3.9)
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The Hamiltonian is that function which minimizes R with respect

to the control uj

- OR QePT
. 2u, 0 = =y -~ Taws +y, (3.10)

The optimal control scheme which satisfies all of the constraints
and the index of performance has been determined by Mohler and is that
used for this formulation., The control law was formulated digitally
using Eqs. (3.1) and (3.2) and constraints (3.8). However, a fundamental
discrepancy was encountered, When maximum power and maximum rate of
temperature rise were achieved, both control variables uj, and u, behaved
opposite to that expected. The rod reactivity uq, which should decrease
at maximum power, increased monotonically. The propellant flow rate us,
constrained to be minimum should have increased at the time Q = Qu,, and
i = @, but decreased below the minimum. At present, the ambiguity has
not been explained, The formulation of the closed loop contrel, however,
still holds,

The deviation of the state and control variables about the

optimal trajectories are:

8Q = Q¢ - Q
8¢ = Cac = G (3.11)
8T = T,. - T,
du = U1ge~ W
1 lac lo (3.12)
Buy = Upze” Upg
The linearized output state vector is
BQ
5x = 5C (3.13)
&T
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and the linearized control vector is

— [5“1]
S5u = . (3.14)
du,

The model describing perturbations about the optimal trajectories is:

§x = TF(t)dx + G(t)du
8 Cpus; Cpusy _Q 7 y =
P20 P"20%0 Qs CpQ
(uyq + CpTy + —5 - B)/¢ A (CpQo- 2 )/ 2 -2 P su
. To £ g
o ! o]
Bx = B/ 2 A 0 &#[0 0
1
] M 0 ~au, J 0 -aT,
(3.15)

The optimal feedback contreol is a 1 x 2 vector in duy and

auzo . From Eq. (l.11) the solution of these controls become:

Q
duy, = _% (P115Q + P128C + P33T) (3.16)

CPQO

¥t

Buy = - (P118Q + P{,8C + Py 8T)+aT (P;18Q + P;,8C + Py 8T)

(3.17)
where the Pij are typlcal elements of the matrix solution of the Ricatti
matrix Eq. (l.13), P(t). Here, it is assumed that the control weighting
matrix Qo is a 2 x 2 identity matrix. Again the error weighting matrix
Q1 is an arbitrary 3 x 3 diagonal matrix whose elements depend on the
required accuracy.

The covariance matricies A(t) and R(t) must be determined by the

statistical amplitudes of perturbations about all optimal trajectories.
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These in turn are used in the solution of Eq. (1.22) to optimally predict

the state variables,

The measurable state variables in this example are both

temperature and power level., 1In all probability the power level in a

nuclear rocket system will be measured logarithmically, but for digital

synthesis linear measurement can be assumed,

where

The measurement matrix is thus:

M(e) = 0 0 0
0 0 my, (3.18)
mll = m33 == ].

The four optimal feedback control schemes advanced in the previous

chapter can easily be investigated for this problem digitally,
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Chapter 4

DISCUSSION OF THE NUMERICAL METHODS

The first step in the numerical synthesis of the optimal closed
loop problem was to determine values for the optimal state variables.
In example 1, this was done by making a polynomial approximation as a
function of time of a graphical representation of the optimal state
variable, which was obtained from an analog computer solution of the state
and auxiliary equations. Using eight boundary conditions along this
trajectory, Crout's method of matrix reduction was applied to determine
the coefficients for the polynomial expressions of n and n., These

polynomial expressions
n = 10,0 + At2 + Bt3 + Cct% + Dt5 + Etb + Ft/ + Gt8

n = 2at + 3Bt? + 4ce3 + 5pe® + 6EtD + 7Ft® + sge’ (4.1)

were used to determine all optimal trajectories for 47 increments of
time, with At = 0.0l seconds, and stored as reference data for the
synthesis problem.

The Crout methodzl, developed in 1941 for desk calculator by an
electrical engineer, P. D. Crout, is particularly well-suited for solving
simultaneous linear algebraic equations on the digital computer. Because
both the recording of new arrays and the perforning of repeated row
operations at each intermediate stage of the reduction are not necessary,

the Crout method is more efficient in terms of time and far less conducive
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to gross error than the more widely used Gauss-Jordan method,
This method transforms the original matrix A into a triangular
revised matrix A' by the following operations upon the elements of the

matrix:

j-1
al', o a.. - x at alt (i <j
. < )
1] 1] i=1 ik k_] —
j-1 (4.2)
a' = 1 1
i. —— (a. - Z a! a,' . .
j at i3 o Gk ki (E>D

ii
where ajj are typical elements of the A matrix.

The solution to the system is then calculated from the trensformed matrix

by back substitution from bottom to top according to the relationshis

n
X, = a' _ 5
k=i+1

a1k X (4.3)
These relationships are fully derived in reference 22, page 486.

The next step was to evaluate the typical elements Pij and Vij
of Eqs. (1.13) and (1.22), These are systems of first order nonlinear
differential equations. The usual method of attack on systems of
differential equations has been the Milne Method or Runge-Kutta Method.
The first is a predictor-corrector method involving the use of two
quadrature formulas; the second is essentially an averaging method,
Because of the size of the systems involved, a combination cf two well-
known methods, the Trapezoidal rule and the Newton-Raphson iterative
method, is chosen instead to achieve the solutionms.

The solution of the Ricatti-type matrix differential equation is
a symmetric matrix. For example, six, rather than nine, simultaneous

differential equations result from a 3 x 3 matrix solution,
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These equations were then integrated numerically as a function
of time using the Trapezoidal rule. The result is, instead of nonlinear
differential equations, nonlinear algebraic equations. The familiar
Newton-Raphson technique was chosen to solve these equations. This
technique, in conjunction with the previously discussed Crout matrix
reduction, is well adapted to the digital computer solution of this type

of problem. The form of the integrated equations is, by the Trapezoidal

rule,
P, (t,) - P, (t.) = -At £ ) Xt oo EEJSEEZ
£= (4.4)
Vv k-l g fY'(t )
V, (t,) -V..(0) =at £ L9 ¢+ 5 £ (r,) + —Lti K
ijtk ij ij 2 gmy LiTR 2 (4.5)
P \"
where fij and fij ara the function forms of the Pij and Vij derivatives

respectively. The m'nus sign is introduced in Eq. (4.4) since the Pij
are integrated backwards in time. The result can be expressed as the

system of equations of the form

fn(q;) = 0 (4.6)

where the q j refer to either Pij oT g j

P P
En(Pyj) = Pyy(6) + I, k+ At £.(5)/2 (4.7)
v v
£a(Vy() = Vi (5) = I, k- At £5.(8)/2 (4.8)
where fP o -
P 1 Ef - P
I, k=oat —L— = £4(E,) (4.9)
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and

V VvV 0 k-l
k=at £ (O)
Ly A Hiyp o+ 221 £5(te) (4.10)

=2

The Newton-Raphson Method is one of successive jterations. For
the digital computer solution the best method of obtaining first
approximations for the kth time period was the Runge-Kutta technique as

a predictor based on the final result of the k-1%P time period.

1.p 2 P
P,.(t = P, . (t + = -+ ?
13¢5, 13(fk-17 6(Rlij 2Rlij + 2R31j + RQij) (4.11)
where
RP P
RP Nt £f (P,. + R, [2)
23 153543 1
P P
R = -At f..(P.. + R 2
3ij 1J( Zij/ )
P P
R = =-At £, .(P.. + R
413 1J< 3ij)
and
= 1l v v v v
Vi1(t0e = Vig(f) * 6(R1yy * 2Ry + 2R3y + Ray )
where
\Y \Y
R = At £, .(V,.)
1ij ijtiij (4.12)
v v Y
Ry . = At £, .(V..+R 2)e
zij 13( ij 1ij/ ))
\'4 \Y \' .
R ant £, (V,, +R, [2;
3ij 1 1] Zij
R = At E;.(V:. + R
4ij i3(Vij 3ij)
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Again the minus sign appears in Rhij because of backward integration.
The Newton-Raphson technique is a linearizing iterative technique for

determining small deviations in the qij from their true values as

determined from the following equations

it SIS s UV s B £(ty) = 0
2411 7T 2ay, o VARERAS 29, U+ *1(E1

(4.13)
ofn an afn

+ "AC[12+ see +

- nq aq  + £ (Ep 1) =0
2911 17 24y, Gum T Fnt k-1

XN

where
n = m(m+ 1)/2

The increments Aqij are

Nd:: = qes: = ..
ql_‘l ql_]‘g qlJ.g"l

where £ refers to the iteration number.

Egs. (4.13) are linear simultaneous algebraic equation in i j
which can be solved by Crout's method., These are then the new values for
the next iteration, Convergence by this method is generally rapid. Care
must be taken that all time varying entities are arranged in the proper
order for each set of calculations.

The digital computer program is given in the appendix and is
entitled "Solution of the Time-Varying Matrix Ricatti Differential
Equation"23 and will be published at a later date. Figures 9 and 10
show flow charts for the computer code.

All random disturbances were generated digitally by means of a

"canned" number generator function within the IBM 7072 systems tape.
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The random disturbances were assumed to have zero mean with a Gaussian

distribution given by the well known bell-shaped formula,

¢ = exp (-RD%/20p?)/ (VX' agp) (4.15)

where ¢ is the ordinate of the normal curve, RD, is the random disturbance.
For digital computation all random numbers from 0.0 to 1.0 were set equal

to the exponential of Eq. (4.15).
x = exp (-RD%/2gpp?) (4.16)

The random disturbance in terms of the random number becomes

1/2
RD = (2 1“(%)) ! 9RD (4.17)

Since the random disturbance must have zero mean negative values of RD
must be equally as probable as positive values. On a random number
generator the random numbers have a rectangular distribution; hence
numbers greater than 0.5 are as likely as numbers less than 0.5. For x
greater than 0.5 it was assumed that RD was positive; for x less 0.5,

RD was negative. Eq. (4.17) was then modified
/2
9RD

. 1/2 (4.18)
- @GRS oy < x <

1 1
+ (2 1n(§7;:?:§T))

All variances were determined to constrain the amplitudes of the
perturbations.
For synthesis by digital computation straightforward solution

of the equations outlined in Chapter 1 was performed for discrete time
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intervals. Where the solution of sets of simultaneous nonlinear
differential equations was required, each was integrated by the Trapezoidal
rule and then Runge-Kutta approximate predictions and Newton~Raphson

iterations made to obtain the final accuracy.
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Chapter 5

AREAS FOR CONTINUING STUDY

A major problem in the area of optimal control arises in the
solution of the optimal state transition trajectories. Techniques in
use and under study for determination of such trajectories have been
classified as direct and indirect. The direct method is characterized
by a systematic scheme to search for the optimum. The method of steepest
decent, or gradient method, is an example. Indirect methods include .
Pontryagin's Maximum Principle,and calculus of variations which result
in a set of differential equations, the boundary conditions being
incomplete on both ends of the solution interval., These are classified
as two point boundary value problems.

Knapp25 has introduced a technique which employs the gradient
method for solving the two point boundary value problem thus combining
both direct and indirect methods. The approach has been successfully used
to solve six simultaneous nonlinear differential equations by the computer.
An effort is being made to develop a code which will solve the two point
boundary value problems of interest in nuclear reactor dynamics. The
result would make possible the synthesis of a large number of unsolved
optimal control problems in this field.

Presently, only the one problem has been investigated using the
Linear Optimal Stochastic Control Theory. Very little has been domne in

the way of parameter variations. However, with the existence of the
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computer techniques investigation of many parameter changes 1is now
possible for the problem of example 1 with little additional effort.

With the completion of the first example an extensive study will
be made of optimal closed loop control for nuclear rocket engine start-up
(shut-down). A clear definition <« the optimal control law will be
determined, This study will include parameter variations. A close liason
will be maintained with the Los Alamos Scientific Laboratory to keep up to
date with current problems and to obtain valuable advice,

Linear Optimal Stochastic Control Theory has the disadvantage
that the precise optimal (or nominal) trajectory must be previously known
to determine the optimal feedback process. Thus different feedback gains
must be determined for each transition trajectory anticipated. For
nuclear-rocket engine start-up this does not present a problem, but for
most applications this becomes a task, Optimal closed loop control by

other synthesis techniques will be compared with this one.
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SECTION IV

LIMITS OF VALIDITY FOR SOME APPROXIMATIONS IN REACTOR DYNAMICS

One of the problems of nuclear rocket dynamics which may be
treated by optimization theory is the problem of minimum-time start-up.
This problem requires mathematical models for the neutron dynamics, for
the effects of temperature on reactivity, and for the necessary
constraints such as limitations on maximum thermal stresses. An
important simplification results if the response of the reactor to a
constant rate of reactivity increase can be described by a simple
approximation,

The reactor dyanmics equations have simple solutions only when
the reactivity 1is not an explicit function of time. Among the well-known
approximate solutions are the "prompt-jump" approximationl’z (hereinafter
called PJ), in which the prompt neutron lifetime £ 1is neglected, and the
"rapid-rate" approximation3’4 (hereinafter called RR), in which the
delayed-neutron decay constant A is neglected. The combination of these

two approximations yields, in the usual notation,
n/no = B/(B 'p) (1)

where ny is the steady-state neutron density for t <0 ( p = 0); this

result may also be derived from simple physical considerations®, 1In the

special case of a "ramp input" of reactivity ( p = yt), Eq. (1) becomes®?

n/n, = B/(B - yt) (2)
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The purpose here is to determine the conditions under which Eqs. (1)
and (2) are useful approximations.

Assuming one group of delayed neutrouns, the dynamic equations

are . . .. . L
n l—&—é; n + A\c, (3)
= B on-e. (4)
Eliminating c¢ yields
ﬂ& + (B-p +Af)n~-(p +Ap)n = 0, (5)

If we neglect n in Eq. (3), that is, if
#i/n << |o- 8| (6)

we obtain

(B -p)n - (p+ Ap)n = O, (7)

This 1s also obtained by setting £ = 0 in Eq. (5). Eq. {7) may be

solved whenp = yt, yielding

+
KB/Ye-Xt

a/n, = [B/(B - O] : (8)

which is tue well-known ramp response in the PJ approximation. Eq. (2)
;esults if A\ = 0 in Eq. (8); more basically, Eq. (1) may be derived
directly from Eq. (3) by neglecting n and replacing Ac by its steady-
state value PBng/4.

To determine the range of'vélidity for the PJ approximation,

compare Egs. (6) and (7) to obtain'(B'—p)2>%> ﬁ(é + XNp). ‘Since the

184



main concern 1s the closeness of approach to prompt critical, the

condition for validity of the PJ approximation may be expressed as

B - pz7\f £( 0 + AB) (9)

For fast ramps, this becomes

B -0 VYi5 (10)

while for slow ramps, Eq. (9)’feduces to

B - P>V (11)

Eq. (l1), written as
B -p> ZVEKB

6 as the criterion for validity of the prompt-jump

is cited by Cohen
approximation, Its usefulness is restricted to slow ramp;.

For the RR approximation, set Ac = Png/4 in Eq. (3), differentiate
with respect to time, and compare the result with Eq. (5). The signifi-

cant requirement is then seen to be ¢ > Ap. For a ramp, this yields

pLLY/ N, or
t << 1/N (12)

as expected, A similar result is obtained by expanding Eqs. (2) and (8)
in powers of t and comparing coefficients of tz. The validity of Eq. (1)
is then governed by Eqs. (9) and (12) together.

An example is shown in Fig. 1, for which y = 0.1 dollar/sec,
A= 0.1 Sec-l, and B/4 = 100 sec-}. The PJ curve is from Eq. (8). The

exact solution of Eq. (5) for p= yt may be expressed in terms of

hypergeometric functions, but if AB/y is an integer, a simpler form
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involving the error function resu1t37’8. (See also References 9, 10,

and 11.) Here AB/y = 1, and the exact solution for n(0) = n, and

n(0) = 0 is
2
- At _ Bal-yt
n/n, % e B exp (?} 2 - % t) [1 +
2 -
x/2yL exp -(E—;#)-‘- (erf = erf u‘—Y_)]
Y zyz 2y4 (13)

For t not near B/y (provided t<f/y) the error functions have large

arguments, and the asymptotic forms yield

n/no = (leyl)e-xt Lz_ - l._?: + 1.3.5 “ eee
X X X

where x = (B -~ A8 - yt)/'\/ yz. This becomes the PJ approximation for
AB/y = 1 1f x is large and if A£ is neglected compared to B.

The RR curve 1is computed from3s’

n/n

2
o ™ {1 + BYn/2yL exp E;Lz (erf = - erf L?__IE)]
V2y£ 2vE

. exp (%7 2 - %t) (14)

For t not near B/y, this becomes

1, L3 . L3.s
2
y y* ¥®

n/n. = —L(l-

[s] s _.yt + cdc)

where y = (B - yt)/Vy.ﬂ; for large y this becomes Eq. (2). Note that

Eq. (14) does not follow from Eq. (13) as A—>»0 since Eq. (13) requires

AB/y = 1.
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The foregoing considerations have not included mention of one
imporéant characteristic of the PJ approximation, namely its failure
for very small values of t. For a ramp input starting from a steady
state at t = 0, Eq. (3) requires that ﬁ(O) = 0. The PJ approximation
yields a discontinuity in natt=0; however, this represents a
transient which vanishes in a time comparable with £/B and which has an
effect so small that it is not observable in Fig. 1.

To illustrate the criteria, replace Eq. (9) by

B-p> 3 \é(p. + AB), (15)

For the numerical example, this is 1 - p /B > 0.135, or t< 8.7 sec, 1If
Eq. (12) is replaced by
£ < 1/3n, (16)

we have t € 3.3 sec. As verified by Fig. 1, Eq, (12) is dominant in
determining the validity of Eq. (2) in this example; for large ramp rates,
Eq. (9) will dominate,

The criterion for validity of the PJ approximation given by
Eq. (15) may be displayed graphically for ramp inputs by plotting
contours of constant Pp a8 in Fig. 2. The co-ordinate axes are B/f£

and p/B = Y/B, and p, is given by

B - o= \[tp" + AB). (17)

Hence p_ is the maximum reactivity for a given £ and y for which the PJ
approximation is valid within the limit set by Eq. (15); i.e., the PJ
approximation is valid in a region to the right of a given contour for

reactivities at least as large as that on the contour defining the region,
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Note that for slow ramps the limits are independent of y, as expected
from Eq. (ll), while for larger ramp rates a progressively shorter prompt
neutron lifetime is required.

The corresponding regions of validity for Eq. (2) are restricted

by both Eqs. (15) and (16). From Eq. (16) we find the limiting reactivity
P, = v/ 3x. (18)

The maximum reaFtivity for which Eq. (2) is valid is therefore the smaller
of the two values given by Eqs. (17) and (18). The modified regions are
shown in Fig. 3, reflecting the fact that Eq. (2) 1is not useful if the
ramp rate is too small, This is an obvious consequence of the assumption
of a constant production rate for delayed neutrons.

The results are easily extended to start-up calculations in which
the initial steady state is maintained by an extraneous source of neutrons,
In this case, Eq. (8) 1is replaced by a much more complicated forml, but

Eq. (1) has a simple extension4:

n/n, = (B - P /B - ),

¢}

where P o is the initial (negative) reactivity.
Further study is necessary before the preceding is incorporated
into an investigation of optimization of fast start-ups; in particular:

1) The approximate solution, Eq. (2) or Eq. (8), must be
terminated before prompt critical because of the obvious
divergence, and a means must be devised for carrying an
approiximate solution smoothly past this point and matching
it to an asymptotic form of the exact solution.

2) The effect of temperature on reactivity must be incorporated;

this need not be included until the later stages of a start-
up 1if the initial level is sufficiently low,
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The problem of matching approximate solutions across prompt critical has

«

e 12,
been investigated by MacPhee1 “in studies of reattor accidents., = Numerous

rough ‘calculations have been méde_which provide conservative over-~

estimates for accident st@dies; 2jt is hoped that further study will yield-

1

approximate solutions which are more suitable for the fast start-up

optimization problem,
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